Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 9(15): 17276-17288, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645350

RESUMO

This study delves into the formation of nanoscale polyhedral block copolymer particles (PBCPs) exhibiting cubic, octahedral, and variant geometries. These structures represent a pioneering class that has never been fabricated previously. PBCP features distinct variations in curvature on the outer surface, aligning with the edges and corners of polyhedral shapes. This characteristic sharply contrasts with previous block copolymers (BCPs), which displayed a smooth spherical surface. The emergence of these cornered morphologies presents an intriguing and counterintuitive phenomenon and is linked to process parameters, such as evaporation rates and initial concentration, while keeping other variables constant. Using a system of coupled Cahn-Hillard (CCH) equations, we uncover the mechanisms driving polyhedral particle formation, emphasizing the importance of controlling relaxation parameters for shape variable u and microphase separation v. This unconventional approach, differing from traditional steepest descent method, allows for precise control and diverse polyhedral particle generation. Accelerating the shape variable u proves crucial for expediting precipitation and aligns with experimental observations. Employing the above theoretical model, we achieve shape predictions for particles and the microphase separation within them, which overcomes the limitations of ab initio computations. Additionally, a numerical stability analysis discerns the transient nature versus local minimizer characteristics. Overall, our findings contribute to understanding the complex interplay between process variables and the morphology of polyhedral BCP nanoparticles.

2.
Chem Sci ; 15(14): 5123-5132, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577378

RESUMO

Molecular metal-nitrogen-carbon (M-N-C) catalysts with well-defined structures and metal-coordination environments exhibit distinct structural properties and excellent electrocatalytic performance, notably in the oxygen reduction reaction (ORR) for fuel cells. Metal-doped azaphthalocyanine (AzPc) catalysts, a variant of molecular M-N-Cs, can be structured with unique long stretching functional groups, which make them have a geometry far from a two-dimensional geometry when loaded onto a carbon substrate, similar to a "dancer" on a stage, and this significantly affects their ORR efficiency at different pH levels. However, linking structural properties to performance is challenging, requiring comprehensive microkinetic modeling, substantial computational resources, and a combination of theoretical and experimental validation. Herein, we conducted pH-dependent microkinetic modeling based upon ab initio calculations and electric field-pH coupled simulations to analyze the pH-dependent ORR performance of carbon-supported Fe-AzPcs with varying surrounding functional groups. In particular, this study incorporates large molecular structures with complex long-chain "dancing patterns", each featuring >650 atoms, to analyze their performance in the ORR. Comparison with experimental ORR data shows that pH-field coupled microkinetic modeling closely matches the observed ORR efficiency at various pH levels in Fe-AzPc catalysts. Our results also indicate that assessing charge transfer at the Fe-site, where the Fe atom typically loses around 1.3 electrons, could be a practical approach for screening appropriate surrounding functional groups for the ORR. This study provides a direct benchmarking analysis for the microkinetic model to identify effective M-N-C catalysts for the ORR under various pH conditions.

3.
Langmuir ; 40(6): 3268-3273, 2024 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-38291580

RESUMO

To realize a highly sensitive immunoassay, high-optical-density probes conjugated with antibodies for target antigens are needed to increase the detectability of antigen-antibody complex formation. In this work, gold nanoparticle (NP)-decorated polymer (GNDP) particles were successfully prepared by mixing positively charged polymer particles and negatively charged Au NPs. GNDP particles decorated with NPs of 20 nm in size had higher optical density than the original Au NPs and GNDPs decorated with smaller Au NPs. Using GNDP particles as a probe, a highly sensitive immunoassay for influenza H1N1 hemagglutinin was realized with a minimum detectable concentration of 32.5 pg/mL. These results indicate that GNDP particles have high potential as an immunoassay probe that can be used in practical immunoassay systems for detecting a wide variety of antigens.


Assuntos
Técnicas Biossensoriais , Vírus da Influenza A Subtipo H1N1 , Nanopartículas Metálicas , Polímeros , Ouro , Imunoensaio/métodos
4.
Langmuir ; 39(29): 10209-10215, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37436760

RESUMO

To obtain safe, high-performance Li-ion batteries, the development of electrolytes with high impact resistance and high ionic conductivity is important. Ionic conductivity at room temperature has been improved by using poly(ethylene glycol) (PEG) diacrylate (PEGDA) to form three-dimensional (3D) networks and solvated ionic liquids. However, the effects of the molecular weight of PEGDA on ionic conductivities and the relationship between ionic conductivities and network structures of cross-linked polymer electrolytes have not been discussed in detail. In this study, the dependence of the ionic conductivity of photo-cross-linked PEG solid electrolytes on the molecular weight of the PEGDA was evaluated. X-ray scattering (XRS) gave detailed information about the dimensions of 3D networks formed by the photo-cross-linking of PEGDA, and the effects of the network structures on the ionic conductivities were discussed.

5.
Biosci Biotechnol Biochem ; 87(8): 857-864, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37253619

RESUMO

Hydrophobins are small amphiphilic proteins that are conserved in filamentous fungi. They localized on the conidial surface to make it hydrophobic, which contributes to conidial dispersal in the air, and helps fungi to infect plants and mammals and degrade polymers. Hydrophobins self-assemble and undergo structural transition from the amorphous state to the rodlet (rod-like multimeric structure) state. However, it remains unclear whether the amorphous or rodlet state is biologically functional and what external factors regulate state transition. In this study, we analyzed the self-assembly of hydrophobin RolA of Aspergillus oryzae in detail and identified factors regulating this process. Using atomic force microscopy, we observed RolA rodlet formation over time, and determined "rodlet elongation rate" and "rodlet formation frequency." Changes in these kinetic parameters in response to pH and salt concentration suggest that RolA rodlet formation is regulated by the strength of ionic interactions between RolA molecules.


Assuntos
Aspergillus oryzae , Proteínas Fúngicas , Proteínas Fúngicas/metabolismo , Aspergillus oryzae/metabolismo , Polímeros/química , Polímeros/metabolismo , Interações Hidrofóbicas e Hidrofílicas
6.
iScience ; 25(9): 104910, 2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36072550

RESUMO

High ionic conductivity, suitable mechanical strength, and electrochemical stability are the main requirements for high-performance poly(ethylene oxide)-based electrolytes. However, the low ionic conductivity owing to the crystallinity of the ethylene oxide chain that limits the discharge rate and low-temperature performance has restricted the development and commercialization of these electrolytes. Lithium electrolytes that combine high ionic conductivity with a high lithium transference number are rare and are essential for high-power batteries. Here, we report hexagonal arranged porous scaffolds for holding prototype polyethylene glycol-based composite electrolytes containing solvate ionic liquid. The appealing electrochemical and thermal properties indicate their potential as electrolytes for safer rechargeable lithium-ion batteries. The porous scaffolds in the composite electrolytes ensure better electrochemical performance towing to their shortened pores (sizes of 3-14 µm), interconnected pathways, and improved lithium mobility. We demonstrate that both molecular design and porous microstructures are essential for improving performance in polymer electrolytes.

7.
Appl Environ Microbiol ; 88(6): e0208721, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35108098

RESUMO

Hydrophobins are small secreted amphipathic proteins ubiquitous among filamentous fungi. Hydrophobin RolA produced by Aspergillus oryzae attaches to solid surfaces, recruits polyesterase CutL1, and thus promotes hydrolysis of polyesters. Because the N-terminal region of RolA is involved in the interaction with CutL1, the orientation of RolA on the solid surface is important. However, the kinetic properties of RolA adsorption to solid surfaces with various chemical properties remain unclear, and RolA structures assembled after the attachment to surfaces are unknown. Using a quartz crystal microbalance (QCM), we analyzed the kinetic properties of RolA adsorption to the surfaces of QCM electrodes that had been chemically modified to become hydrophobic or charged. We also observed the assembled RolA structures on the surfaces by atomic force microscopy and performed molecular dynamics (MD) simulations of RolA adsorption to self-assembled monolayer (SAM)-modified surfaces. The RolA-surface interaction was considerably affected by the zeta potential of RolA, which was affected by pH. The interactions of RolA with the surface seemed to be involved in the self-assembly of RolA. Three types of self-assembled structures of RolA were observed: spherical, rod-like, and mesh-like. The kinetics of RolA adsorption and the structures formed depended on the amount of RolA adsorbed, chemical properties of the electrode surface, and the pH of the buffer. Adsorption of RolA to solid surfaces seemed to depend mainly on its hydrophobic interaction with the surfaces; this was supported by MD simulations, which suggested that hydrophobic Cys-Cys loops of RolA attached to all SAM-modified surfaces at all pH values. IMPORTANCE The adsorption kinetics of hydrophobins to solid surfaces and self-assembled structures formed by hydrophobin molecules have been studied mostly independently. In this report, we combined the kinetic analysis of hydrophobin RolA adsorption onto solid surfaces and observation of RolA self-assembly on these surfaces. Since RolA, whose isoelectric point is close to pH 4.0, showed higher affinity to the solid surfaces at pH 4.0 than at pH 7.0 or 10.0, the affinity of RolA to these surfaces depends mainly on hydrophobic interactions. Our combined analyses suggest that not only the adsorbed amount of RolA but also the chemical properties of the solid surfaces and the zeta potential of RolA affect the self-assembled RolA structures formed on these surfaces.


Assuntos
Aspergillus oryzae , Adsorção , Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Propriedades de Superfície
8.
Nat Commun ; 13(1): 303, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35027559

RESUMO

Understanding the transmission of nanoscale forces in the pico-to-nanonewton range is important in polymer physics. While physical approaches have limitations in analyzing the local force distribution in condensed environments, chemical analysis using force probes is promising. However, there are stringent requirements for probing the local forces generated before structural damage. The magnitude of those forces corresponds to the range below covalent bond scission (from 200 pN to several nN) and above thermal fluctuation (several pN). Here, we report a conformationally flexible dual-fluorescence force probe with a theoretically estimated threshold of approximately 100 pN. This probe enables ratiometric analysis of the distribution of local forces in a stretched polymer chain network. Without changing the intrinsic properties of the polymer, the force distribution was reversibly monitored in real time. Chemical control of the probe location demonstrated that the local stress concentration is twice as biased at crosslinkers than at main chains, particularly in a strain-hardening region. Due to the high sensitivity, the percentage of the stressed force probes was estimated to be more than 1000 times higher than the activation rate of a conventional mechanophore.

9.
Sci Technol Adv Mater ; 23(1): 31-40, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35069011

RESUMO

The oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are important processes for various energy devices, including polymer electrolyte fuel cells, rechargeable metal-air batteries, and water electrolyzers. We herein report the preparation of a rare metal-free and highly efficient ORR/OER electrocatalyst by calcination of a mixture of blood meal and ascidian-derived cellulose nanofibers. The obtained carbon alloys showed high ORR/OER performances and proved to be promising electrocatalysts. The carbon alloys synthesized entirely from biomass resources not only lead to a new electrocatalyst fabrication process but also contribute to CO2 reduction and the realization of a good life-cycle assessment value in fabrication of a sustainable energy device.

10.
R Soc Open Sci ; 8(8): 210582, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34386261

RESUMO

We propose a surface modification of poorly dispersive polytetrafluoroethylene (PTFE) particles via bioinspired polydopamine-polyethyleneimine (PDA-PEI) which conferred PTFE particles a uniform dispersion in aqueous medium. With increasing dopamine concentration in the reaction solution, dispersity of PTFE particles improved and the surface charges of particles changed from negative to positive due to an increase of surface coverage of PDA-PEI layers. Simplicity of the method here outlines an attractive route for surface modification of inert surfaces useful for large-scale applications.

11.
Macromol Biosci ; 21(10): e2100113, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34231307

RESUMO

The geometrical control of micronetwork structures ( µ NSs) formed by endothelial cells is an important topic in tissue engineering, cell-based assays, and fundamental biological studies. In this study, µ NSs are formed using human umbilical vein endothelial cells (HUVECs) by the coculture of HUVECs and human mesenchymal stem cells (MSCs) confined in a honeycomb-patterned poly-l-lactic acid film (honeycomb film (HCF)), which is a novel cell culture scaffold. The HCF is produced using the breath figure method, which uses condensed water droplets as pore templates. The confinement of the HUVECs and MSCs in the HCF along with the application of centrifugal force results in µ NS formation when the pore size is more than 20  µ m. Furthermore, µ NS development is geometrically restricted by the hexagonally packed and connected pores in the horizontal direction of the HCF. Network density is also controlled by changing the seeding density of the HUVECs and MSCs. The threshold pore size indicates that µ NSs can be formed spontaneously by using an HCF with a perfectly uniform porous structure. This result provides an important design guideline for the structure of porous cell culture scaffolds by applying a blood vessel model in vitro.


Assuntos
Células-Tronco Mesenquimais , Polímeros , Técnicas de Cocultura , Células Endoteliais da Veia Umbilical Humana , Humanos , Polímeros/química , Polímeros/farmacologia , Engenharia Tecidual , Alicerces Teciduais/química
12.
Langmuir ; 37(20): 6201-6207, 2021 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-33949870

RESUMO

In nature, laccase enzymatically catalyzes the reaction of phenolic compounds with oxygen to produce hardened surfaces known as cuticles on insects and plants. Inspired by this natural process, the present work investigated a robust, biodegradable hydrogel synthesized from dopamine and gelatin. This gel is obtained by the oxidation of dopamine dissolved in water, after which the resulting quinone compound automatically undergoes self-polymerization. The oxidized dopamine subsequently undergoes Schiff base and Michael addition reactions with gelatin, such that the exposed gelatin surface cross-links to generate a continuous hardened hydrogel film. Because gelatin transitions between sol and gel states with changes in temperature, two- and three-dimensional structures could be obtained from the gel state. This bio-inspired interfacial cross-linking reaction provides a simple means of forming complex morphologies and represents a promising technique for bio-applications.


Assuntos
Gelatina , Hidrogéis , Reagentes de Ligações Cruzadas , Dopamina , Oxirredução , Polimerização
13.
Eur J Pharmacol ; 896: 173930, 2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33545157

RESUMO

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which emerged in December 2019 and caused the coronavirus disease 2019 (COVID-19) pandemic, took the world by surprise with an unprecedented public health emergency. Since this pandemic began, extraordinary efforts have been made by scientists to understand the pathogenesis of COVID-19, and to fight the infection by providing various preventive, diagnostic and treatment opportunities based on either novel hypotheses or past experiences. Despite all the achievements, COVID-19 continues to be an accelerating health threat with no specifically approved vaccine or therapy. This review highlights the recent advances in COVID-19 infection, with a particular emphasis on nanomedicine applications that can help in the development of effective vaccines or therapeutics against COVID-19. A novel future perspective has been proposed in this review based on utilizing polymersome nano-objects for effectively suppressing the cytokine storm, which may reduce the severity of COVID-19 infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19 , Nanomedicina/métodos , SARS-CoV-2/efeitos dos fármacos , Vacinas Virais/farmacologia , COVID-19/epidemiologia , COVID-19/prevenção & controle , Desenvolvimento de Medicamentos , Humanos
14.
Langmuir ; 36(40): 12023-12029, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32931290

RESUMO

Wettability control of porous materials is significant in lateral flow immunoassay, microfluidic systems, microdroplet manipulation, and so on. In this report, formation of metal oxide layers on self-organized polymer honeycomb films to control surface wettability by simple sol-gel coating and UV-O3 treatment was demonstrated. By the combination of bottom-up and top-down processes, silica thin layers can be formed by retaining their original three-dimensional honeycomb structures. Furthermore, photopatterning of metal oxides on honeycomb films can be achieved by UV irradiation through photomasks. Site-selective wettability control of honeycomb films was realized by patterning silica layers on the surface of the film.

15.
ACS Omega ; 5(29): 18391-18396, 2020 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-32743215

RESUMO

We herein report that sulfur and nitrogen co-doped hollow spherical carbon particles can be applied to oxygen reduction reaction (ORR) electrocatalysts prepared by calcination of polydopamine (PDA) hollow particles. The hollow structure of PDA was formed by auto-oxidative interfacial polymerization of dopamine at the oil and water interface of emulsion microdroplets. The PDA was used as the nitrogen source as well as a platform for sulfur-doping. The obtained sulfur and nitrogen co-doped hollow particles showed a higher catalytic activity than that of nonsulfur-doped particles and nonhollow particles. The high ORR activity of the calcined S-doped PDA hollow particles could be attributed to the combination of nitrogen and sulfur active sites and the large surface areas owing to a hollow spherical structure.

16.
Langmuir ; 36(31): 9064-9073, 2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32697090

RESUMO

A simple pathway for the fabrication of real moth eyelike patterned (MEP) polymer film with a double-layered nano/microhierarchical structure is demonstrated through a solid/liquid interfacial reaction at atmospheric conditions. A convex-structured polyvinyl alcohol (PVA) film containing CdCl2 was first fabricated using a self-organized honeycomb-patterned porous film as a template. The CdCl2/PVA convex film was immersed into Na2S/ethanol solution to facilitate the reaction between CdCl2 and Na2S at the solid/liquid interface, which led to the functionalization of CdS nanoparticles in the convex-structured PVA film. The tunable introduction of interfacial reaction resulted in the formation of a CdS moth eyelike nanoarray on the top surface of the PVA convex microarray, which mimicked the real moth eye (PVA-CdS MEP). PVA-CdS MEP film with a double moth eyelike structure showed improved antireflective property in comparison with flat and convex-structured PVA films. The PVA-CdS MEP film showed photoresponse under simulated solar light radiation and flexible duration after 500 cycles of folding.

17.
Langmuir ; 36(23): 6365-6369, 2020 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-32407123

RESUMO

Underwater highly bubble and oil-repellent surfaces were prepared based on honeycomb- and pincushion-structured films prepared by breath figure technique and post modifications including UV-ozone treatment and peeling the top layer. Furthermore, bubble generation from the plastron-like honeycomb gas chamber by attaching oil droplet onto the surface of honeycomb films was first observed. Both controlling gas bubbles and oil droplets underwater are important issues in the field of microfluidics since they are useful and may solve the maleficence to liquid transportation in narrow microchannels.

18.
RSC Adv ; 10(7): 4058-4063, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35492658

RESUMO

Biomimetic synthetic functional materials are valuable for a large number of practical applications with improved or tunable performance. In this paper, we present a series of mussel-inspired biomimetic catechol-containing copolymers synthesized from dopamine methacrylamide (DMA) and 2-(2-ethoxyethoxy)ethyl acrylate (EEA) and abbreviated as poly(PDMA-PEEA). The successfully synthesized adhesive polymers allow adhering polytetrafluoroethylene (PTFE) and were used for coating PTFE particles in organic solvent and re-dispersion in an aqueous medium. Adhesive polymer coated PTFE particles were efficiently used as a nanoreactor for generating silver (Ag) metal nanoparticles (NPs).

19.
Biosci Biotechnol Biochem ; 84(4): 678-685, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31876261

RESUMO

Hydrophobins are small, amphipathic proteins secreted by filamentous fungi. Hydrophobin RolA, which is produced by Aspergillus oryzae, attaches to solid surfaces, recruits the polyesterase CutL1, and consequently promotes hydrolysis of polyesters. Because this interaction requires the N-terminal, positively charged residue of RolA to be exposed on the solid surface, the orientation of RolA on the solid surface is important for recruitment. However, the process by which RolA forms the self-assembled structure at the interface remains unclear. Using the Langmuir-Blodgett technique, we analyzed the process by which RolA forms a self-assembled structure at the air-water interface and observed the structures on the hydrophobic or hydrophilic SiO2 substrates via atomic force microscopy. We found that RolA formed self-assembled films in two steps during phase transitions. We observed different assembled structures of RolA on hydrophilic and hydrophobic SiO2 substrates.


Assuntos
Aspergillus oryzae/metabolismo , Proteínas Fúngicas/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Microscopia de Força Atômica , Dióxido de Silício/metabolismo , Propriedades de Superfície , Água/química
20.
ACS Omega ; 4(2): 3827-3831, 2019 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-31459593

RESUMO

The honeycomb-structured film has advantages such as high wettability and high surface area. This structure and properties are suitable for the capacitor electrode. In this study, the electrode structure is controlled by the synthesis of MnO2 nanoparticles using the breath figure method. The electrode performance was calculated by electrochemical measurements. As a result, the capacitance value was 100.5 F/g at 1 mV s-1, which was improved 2.7 times as compared with that without structure control.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...