Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Cereb Blood Flow Metab ; : 271678X241261942, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38879800

RESUMO

Apolipoprotein ε4 (APOE4) carriers develop brain metabolic dysfunctions decades before the onset of Alzheimer's disease (AD). A goal of the study is to identify if rapamycin, an inhibitor for the mammalian target of rapamycin (mTOR) inhibitor, would enhance synaptic and mitochondrial function in asymptomatic mice with human APOE4 gene (E4FAD) before they showed metabolic deficits. A second goal is to determine whether there may be genetic-dependent responses to rapamycin when compared to mice with human APOE3 alleles (E3FAD), a neutral AD genetic risk factor. We fed asymptomatic E4FAD and E3FAD mice with control or rapamycin diets for 16 weeks from starting from 3 months of age. Neuronal mitochondrial oxidative metabolism and excitatory neurotransmission rates were measured using in vivo 1H-[13C] proton-observed carbon-edited magnetic resonance spectroscopy, and isolated mitochondrial bioenergetic measurements using Seahorse. We found that rapamycin enhanced neuronal mitochondrial function, glutamate-glutamine cycling, and TCA cycle rates in the asymptomatic E4FAD mice. In contrast, rapamycin enhances glycolysis, non-neuronal activities, and inhibitory neurotransmission of the E3FAD mice. These findings indicate that rapamycin might be able to mitigate the risk for AD by enhancing brain metabolic functions for cognitively intact APOE4 carriers, and the responses to rapamycin are varied by APOE genotypes. Consideration of precision medicine may be needed for future rapamycin therapeutics.

2.
Front Rehabil Sci ; 3: 1017180, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386777

RESUMO

Accumulating evidence suggests that gut microbes modulate brain plasticity via the bidirectional gut-brain axis and play a role in stroke rehabilitation. However, the microbial species alterations associated with stroke and their correlation with functional outcome measures following acute stroke remain unknown. Here we measure post-stroke gut dysbiosis and how it correlates with gut permeability and cognitive functions in 12 stroke participants, 18 controls with risk factors for stroke, and 12 controls without risk factors. Stool samples were used to measure the microbiome with whole genome shotgun sequencing and leaky gut markers. We genotyped APOE status and measured diet composition and motor, cognitive, and emotional status using NIH Toolbox. We used linear regression methods to identify gut microbial associations with cognitive and emotional assessments. We did not find significance differences between the two control groups. In contrast, the bacteria populations of the Stroke group were statistically dissimilar from the control groups. Relative abundance analysis revealed notable decreases in butyrate-producing microbial taxa, secondary bile acid-producing taxa, and equol-producing taxa. The Stroke group had higher levels of the leaky gut marker alpha-1-antitrypsin in the stool than either of the groups and several taxa including Roseburia species (a butyrate producer) were negatively correlated with alpha-1-antitrypsin. Stroke participants scored lower on memory testing than those in the two control groups. Stroke participants with more Roseburia performed better on the picture vocabulary task; more Bacteroides uniformis (a butyrate producer) and less Escherichia coli (a pro-inflammatory species) reported higher levels of self-efficacy. Intakes of fiber, fruit and vegetable were lower, but sweetened beverages were higher, in the Stroke group compared with controls. Vegetable consumption was correlated with many bacterial changes among the participants, but only the species Clostridium bolteae, a pro-inflammatory species, was significantly associated with stroke. Our findings indicate that stroke is associated with a higher abundance of proinflammatory species and a lower abundance of butyrate producers and secondary bile acid producers. These altered microbial communities are associated with poorer functional performances. Future studies targeting the gut microbiome should be developed to elucidate whether its manipulation could optimize rehabilitation and boost recovery.

3.
Nutr Neurosci ; 25(8): 1669-1679, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33666538

RESUMO

OBJECTIVE: The goal of the study was to identify the potential nutrigenetic effects to inulin, a prebiotic fiber, in mice with different human apolipoprotein E (APOE) genetic variants. Specifically, we compared responses to inulin for the potential modulation of the systemic metabolism and neuroprotection via gut-brain axis in mice with human APOE ϵ3 and ϵ4 alleles. METHOD: We performed experiments with young mice expressing the human APOE3 (E3FAD mice and APOE4 gene (E4FAD mice). We fed mice with either inulin or control diet for 16 weeks starting from 3 months of age. We determined gut microbiome diversity and composition using16s rRNA sequencing, systemic metabolism using in vivo MRI and metabolomics, and blood-brain barrier (BBB) tight junction expression using Western blot. RESULTS: In both E3FAD and E4FAD mice, inulin altered the alpha and beta diversity of the gut microbiome, increased beneficial taxa of bacteria and elevated cecal short chain fatty acid and hippocampal scyllo-inositol. E3FAD mice had altered metabolism related to tryptophan and tyrosine, while E4FAD mice had changes in the tricarboxylic acid cycle, pentose phosphate pathway, and bile acids. Differences were found in levels of brain metabolites related to oxidative stress, and levels of Claudin-1 and Claudin-5 BBB tight junction expression. DISCUSSION: We found that inulin had many similar beneficial effects in the gut and brain for both E3FAD and E4FAD mice, which may be protective for brain functions and reduce risk for neurodegeneration. . E3FAD and E4FAD mice also had distinct responses in several metabolic pathways, suggesting an APOE-dependent nutrigenetic effects in modulating systemic metabolism and neuroprotection.


Assuntos
Inulina , Prebióticos , Animais , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Eixo Encéfalo-Intestino , Modelos Animais de Doenças , Genótipo , Humanos , Camundongos , Neuroproteção , Nutrigenômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...