Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23557, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38187291

RESUMO

In Burkina Faso, human activities around water points in rural areas affect groundwater resources, which become unfit for consumption. Nearly 33.5% of boreholes are subject to point source pollution. The assessment of the evolution of such pollution should be monitored to assess groundwater quality. In addition, withdrawals for irrigation alone are estimated at 85%, i.e. 46% of the water demand, heightening the deterioration in quality while creating depression zones further leading to an increase in recharge. It is therefore critical to understand the evolution and fate of the transfer of pollutants in such environments. In this study, we aimed to model the transfer of pollutant and predict the future state of pollution using the MT3D-USGS Groundwater Solute Transport Simulator code through the Groundwater Modelling Software (GMS) over the period 2012-2062 (50 years). A mathematical model is further developed through inferential statistics and used as a surrogate model for comparison. The results showed that deterioration in water quality was more attributable to withdrawals, especially for Cyanide (Cn) and Arsenic (As). A rather slow degradation is reported for Lead (Pb), which extends over 22 km, and Fluoride (F), which extends from 4 to 10 km due to localized recharge. A faster degradation for Cn over a distance of 2-16 km and as from 3 to 11 km is also observed because of the geological setting of the subsoil. These results might assist decision-makers for the quantitative and qualitative management of groundwater resources, and the management of the basement aquifer in the area through the establishment of protection zones.

2.
Sci Total Environ ; 757: 143792, 2021 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-33280876

RESUMO

In Sahelian landscapes, land use/land cover (LULC) dynamics and climate variability are already known to affect the water cycle. In its current practice however, hydrological modelling does not account for LULC changes. This issue pertains to rapidly evolving watersheds and might result in critical inaccuracies in the simulated processes. In this study, the Soil and Water Assessment Tool (SWAT) model was used to simulate surface runoff in the small Sahelian watershed of Tougou, which underwent significant LULC changes between 1952 and 2017. Based on rainfall/runoff data acquired from 2004 to 2018, the SWAT model was calibrated under two scenarios: a static land use scenario (SLU) using a single LULC map (in 1999) and a dynamic land use scenario (DLU) integrating 3 LULC maps (1999, 2009 and 2017). The DLU scenario estimated with higher accuracy surface runoff, deep aquifer infiltration and actual evapotranspiration processes. Based on the calibrated parameters, surface runoff was simulated during the historical period 1952-2003 under four scenarios with static LULC maps (in 1952, 1973, 1986 and 1999) opposed to a fifth scenario integrating these LULC maps dynamically. The DLU scenario was found to be more effective at picturing the so-called Sahelian paradox (i.e. the increase in surface runoff despite the decrease in rainfall), reported in the literature for small watersheds in the Sahel. The analysis of variability revealed that fluctuations in surface runoff were both influenced by rainfall and LULC changes. Furthermore, the isolated contributions of climate variability and LULC changes on surface runoff showed that LULC conditions played a dominant role (ηlulc = +393.1%) in the runoff increase over climate (ηcl = -297%) during the historical period. These results highlight the importance of accounting for LULC dynamics in hydrological modelling and advocate the development of integrated modelling frameworks for hydrologists and water resource managers.

3.
Chemosphere ; 157: 71-8, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27209555

RESUMO

Soil and water samples were collected from a watershed in Burkina Faso where illegal artisanal gold extraction using cyanidation occurs. The samples were used to evaluate cyanide contamination and the presence of cyanide degrading bacteria (CDB). Free cyanide (F-CN) was detected in all samples, with concentrations varying from 0.023 to 0.9 mg kg(-1), and 0.7-23 µg L(-1) in the soil and water samples, respectively. Potential CDB also were present in the samples. To test the effective F-CN degradation capacity of the isolated CDB species, the species were cultivated in growth media containing 40, 60 or 80 mg F-CN L(-1), with or without nutrients, at pH 9.5 and at room temperature. More than 95% of F-CN was degraded within 25 h, and F-CN degradation was associated with bacterial growth and ammonium production. However, initial concentrations of F-CN higher than 100 mg L(-1) inhibited bacterial growth and cyanide degradation. Abiotic tests showed that less than 3% of F-CN was removed by volatilization. Thus, the degradation of F-CN occurred predominately by biological mechanisms, and such mechanisms are recommended for remediation of contaminated soil and water. The bacteria consortium used in the experiment described above exist in a Sahelian climate, which is characterized by a long hot and dry season. Because the bacteria are already adapted to the local climate conditions and show the potential for cyanide biodegradation, further applicability to other contaminated areas in West Africa, where illegal gold cyanidation is widespread, should be explored.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Cianetos/metabolismo , Ouro , Mineração , Burkina Faso , Cianatos , Poluição Ambiental/análise , Microbiologia do Solo , Poluentes Químicos da Água/análise
4.
PLoS Negl Trop Dis ; 9(10): e0004127, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26513655

RESUMO

We study the geography of schistosomiasis across Burkina Faso by means of a spatially explicit model of water-based disease dynamics. The model quantitatively addresses the geographic stratification of disease burden in a novel framework by explicitly accounting for drivers and controls of the disease, including spatial information on the distributions of population and infrastructure, jointly with a general description of human mobility and climatic/ecological drivers. Spatial patterns of disease are analysed by the extraction and the mapping of suitable eigenvectors of the Jacobian matrix subsuming the stability of the disease-free equilibrium. The relevance of the work lies in the novel mapping of disease burden, a byproduct of the parametrization induced by regional upscaling, by model-guided field validations and in the predictive scenarios allowed by exploiting the range of possible parameters and processes. Human mobility is found to be a primary control at regional scales both for pathogen invasion success and the overall distribution of disease burden. The effects of water resources development highlighted by systematic reviews are accounted for by the average distances of human settlements from water bodies that are habitats for the parasite's intermediate host. Our results confirm the empirical findings about the role of water resources development on disease spread into regions previously nearly disease-free also by inspection of empirical prevalence patterns. We conclude that while the model still needs refinements based on field and epidemiological evidence, the proposed framework provides a powerful tool for large-scale public health planning and schistosomiasis management.


Assuntos
Atividades Humanas , Esquistossomose/epidemiologia , Animais , Burkina Faso/epidemiologia , Exposição Ambiental , Humanos , Modelos Estatísticos , Prevalência , Topografia Médica , Recursos Hídricos
5.
Environ Manage ; 43(5): 790-803, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19037691

RESUMO

In this study, the authors investigate farmers' vulnerability to climate variability and evaluate local adoption of technology and farmers' perceptions of adaptation strategies to rainfall variability and policies. A survey was conducted in a community in northern Burkina Faso following the crop failure of 2004. In 2006, following a better harvest, another survey was conducted to compare farmers' actions and reactions during two contrasted rainy seasons. The results confirm that farmers from this community have substantially changed their practices during the last few decades. They have adopted a wide range of techniques that are intended to simultaneously increase crop yield and reduce yield variability. Micro water harvesting (Zaï) techniques have been widely adopted (41%), and a majority of fields have been improved with stone lines (60%). Hay (48%) and sorghum residues are increasingly stored to feed animals during the dry season, making bull and sheep fattening now a common practice. Dry season vegetable production also involves a majority of the population (60%). According to farmers, most of the new techniques have been adopted because of growing land scarcity and new market opportunities, rather than because of climate variability. Population pressure has reached a critical threshold, while land scarcity, declining soil fertility and reduced animal mobility have pushed farmers to intensify agricultural production. These techniques reduce farmers' dependency on rainfall but are still insufficient to reduce poverty and vulnerability. Thirty-nine percent of the population remains vulnerable after a good rainy season. Despite farmers' desire to remain in their own communities, migrations are likely to remain a major source of regular income and form of recourse in the event of droughts.


Assuntos
Agricultura/métodos , Criação de Animais Domésticos/métodos , Clima , Efeito Estufa , Política Pública , Agricultura/estatística & dados numéricos , Criação de Animais Domésticos/estatística & dados numéricos , Burkina Faso , Grupos Focais , Humanos , Entrevistas como Assunto , Fatores Socioeconômicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...