Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Inflamm Res ; 17: 6063-6073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39253565

RESUMO

Purpose: Short stature is prevalent among children worldwide, particularly in developing countries. Various trace elements, including zinc, magnesium, iron, copper, chromium and selenium, are crucial for proper body development. The aim of this study is to explore the relationship between trace elements and TNF-α and IL-6 to elicit and possible pathway responsible for short stature. Methods: Two hundred and twenty samples were recruited for this study, 100 short statures and 120 controls were randomly selected. Six trace elements were measured using graphite furnace atomic absorption spectrometry. The concentrations of IL-6 and TNF-α in serum were assessed utilizing the Enzyme-Linked-Immunosorbent Assay (ELISA). Superoxide dismutase was also analysed to determine the oxidative stress response. Results: The study revealed notable distinctions in serum trace element levels of short stature. They exhibited significant lower levels of zinc and magnesium, alongside higher levels of copper. The altered Cu/Zn ratio seemed to have a positive correlation with short stature. Conversely, no significant disparities were observed in iron, chromium, and selenium levels. Furthermore, a significant rise was noted in proinflammatory marker TNF-α and cytokine IL-6. Additionally, superoxide dismutase was low in the short statures In silico study shows a high affinity of Zinc with TNF alpha. It may be suggested that inflammation at any time during childhood, with the rise in TNF alpha tightly binds with zinc and may have led to a decrease in zinc serum levels, altered redox homeostasis and resulted in short stature. Conclusion: The altered Cu/Zn ratio along with high TNF alpha and IL6 may be used as a marker for short stature in the initial years of growth in children before they reach maturity at the age of 18. Thereafter, introducing zinc supplementation could potentially enhance stature by mitigating TNF-alpha level. Further experimental studies will help to establish the exact role of zinc with TNF alpha in short stature.

2.
Clin Chim Acta ; 562: 119856, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38977170

RESUMO

BACKGROUND AND AIMS: Neural tube defects (NTDs) occur when the neural tube fails to close within 28 days of human embryonic development. This results in central nervous system disorders like anencephaly, spina bifida, and encephalocele. Early diagnosis and treatment are crucial to minimize their impact on an individual's health and well-being. The present study aims to define the association between prenatal exposure to trace elements (Cu and Zn) and the single nucleotide polymorphism (SNP) of the MTHFR gene involved in folate metabolism pathways in neural tube defects in children and their mothers. MATERIAL AND METHODS: A cross-sectional study involving 331 participants (90 NTD cases, 88 healthy mothers, 85 NTD children, and 68 healthy children) from antenatal check-ups in Obstetrics and Gynaecology and Pediatric Surgery for Neural Tube Defects in the Outpatient Department (OPD) and Inpatient Department (IPD). Assessed Cu and Zn concentrations and their associations. Genomic DNA was extracted, and real-time PCR was used to determine genotypes. Atomic absorption spectrophotometry measured trace elements. Statistical analyses included Chi-Square tests, odds ratios, and Mann-Whitney U tests. RESULTS: Significant associations were found between MTHFR C677T genotypes and NTD risk in mothers (p = 0.0491) and children (p = 0.0297). Allelic frequency analysis indicated a T allele association with NTD risk in children (p = 0.0107). Recessive models showed significant associations in mothers (p = 0.0169) and children (p = 0.1678). Cu levels differed significantly between NTD cases and controls (p < 0.0001), with MTHFR genotypes influencing Cu levels. Zinc levels also varied significantly (p < 0.0001). CONCLUSION: This study reveals complex associations between MTHFR C677T genotypes, trace element concentrations, and NTD risk in mothers and children. This targeted approach allows healthcare providers to identify at-risk pregnancies early, enabling personalised interventions like folic acid supplementation and counselling to moderate neural tube defect (NTD) risk in a future pregnancy.


Assuntos
Cobre , Metilenotetra-Hidrofolato Redutase (NADPH2) , Defeitos do Tubo Neural , Zinco , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Cobre/sangue , Zinco/sangue , Feminino , Defeitos do Tubo Neural/genética , Defeitos do Tubo Neural/diagnóstico , Defeitos do Tubo Neural/sangue , Estudos Transversais , Polimorfismo de Nucleotídeo Único , Masculino , Adulto , Oligoelementos/sangue , Gravidez , Criança
3.
J Indian Assoc Pediatr Surg ; 27(6): 718-722, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36714470

RESUMO

Background: Neonatal sepsis term is an infection of newborns <28 days of age. It is a common cause of death in developing countries. The receptor-gamma receptor FCGR2A has been shown to be associated with neonatal sepsis. It is an activating receptor found in many cell types such as monocytes, neutrophils, macrophages, platelets, and others. The receptor has a polymorphism (single-nucleotide polymorphism rs1801274) in its gene (FCGR2A) that encodes either a histidine (H) or arginine (R) at amino acid position 131. There are many studies showing the impact of these FCGR2A polymorphisms on sepsis. Our study aims to determine the prevalence of Fc-gamma receptor FCGR2A (rs1801274) polymorphism in neonatal sepsis and control in Eastern UP populations. Patients and Methods: We conducted a cross-sectional descriptive study of 590 patients (310 healthy individuals and 280 sepsis patients) to determine polymorphisms in the CD32A coding region in neonates. All individuals were genotyped for a variant at position 131 of the FcγRIIA gene. Discussion: In our study, the prevalence of FcγRIIa polymorphism is more in neonates with sepsis than in noninfected neonates. It was observed that the heterozygous allele (AG) were significantly increased in septic neonates when compared to the normal. Conclusion: Our data indicate that FcγRIIA genotyping can be used as a marker of genetic susceptibility to sepsis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA