Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(21): 15125-15129, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38764422

RESUMO

The strong two-photon induced nonlinear absorption and self-focusing type positive nonlinear refraction are pronounced by the structural engineering in ß-functionalized cobalt corroles.

2.
Inorg Chem ; 62(49): 19956-19970, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38010211

RESUMO

Four new ß-functionalized π-extended cobalt corroles with one and two dicyanovinyl (DCV) or dicyanobutadienyl (DCBD) moieties at the 3- and 3,17-positions have been synthesized and characterized by various spectroscopic techniques. Interestingly, the synthesized DCV- and DCBD-appended cobalt corroles displayed panchromatic and near-infrared absorption in the range 300-1100 nm in CH2Cl2 and pyridine solvents. (MN)2-(Cor)Co and A2MN2-(Cor)Co exhibited 8-9 times enhancement in the molar absorptivity of the Q band compared to the parent corrole ((Cor)Co). The unique absorption spectral features of these ß-functionalized cobalt corroles are splitting, broadening, and red-shifting in the Soret and Q bands. One DCV unit brings a 30-46 nm red shift, whereas one DCBD unit brings a 40-75 nm red shift in the Q band compared to the corresponding precursors. This is rare that the intensity of the longest Q band is greater than or equal to the Soret-like bands. These corrole derivatives exhibit UV-vis spectral features similar to those of chlorophyll a. A 220 mV positive shift per DCV group and 160 mV positive shift per DCBD group were observed in the first oxidation potentials compared to (Cor)Co in the desired direction for the utility of these cobalt complexes in electrocatalysis. DFT studies revealed that HOMO and LUMO were stabilized after appending DCV and DCBD groups on the corrole macrocycle and exhibited a "push-pull" behavior leading to promising material applications in nonlinear optics (NLO) and catalysis.

3.
Chemistry ; 29(41): e202301341, 2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37133307

RESUMO

Copper and silver tritolylcorroles (TTC) are symmetrically functionalized to carry two tetracyanobutadiene (TCBD) entities via [2+2] cycloaddition-retroeletrocyclization reaction involving ethynyl functionalized corroles with an electron acceptor, tetracyanoethylene (TCNE) in excellent yields, as the first examples of corrole-TCBD push-pull systems. The strong push-pull effect resulted in charge polarization in the ground state resulting in a considerable hypsochromic shift of the spectrum extending it into the near-IR region. Electrochemical studies coupled with computational studies revealed considerable interactions between the two TCBD entities via the corrole π-system and the degree of such interactions was found to depend on the metal ion present in the corrole cavity. Energy considerations suggested charge transfer (CT) from the S2 or vibrationally hot S1 state but not the relaxed S1 state in the case of CuTTC(TCBD)2 while CT to occur from all these states in the case of AgTTC(TCBD)2 . Additionally, the high-energy CT states populate the low-lying triplet states. Systematic femtosecond pump-probe studies provided the ultimate proof for the occurrence of excited CT as a function of excitation wavelength followed by the efficient population of the triplet states. The present study brings out the significance of charge transfer in efficiently populating the triplet states in rather unusual copper and silver corroles carrying two TCBD entities.

4.
Inorg Chem ; 62(20): 7738-7752, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37146287

RESUMO

A new family of ß-dicyanovinyl (DCV)-appended corroles represented as MTPC(MN) (where M = 3H, Cu, Ag, and Co(PPh3) and MN = malononitrile and TPC = 5,10,15-triphenylcorrole) were synthesized starting from the free base mono ß-formyl corrole, H3TPC(CHO), and characterized along with their respective MTPC(CHO) and MTPC complexes as to their spectroscopic and electrochemical properties in nonaqueous media. Comparisons between the two series of corroles demonstrate a pronounced substituent effect of the ß-DCV group on the physicochemical properties making the MTPC(MN) derivatives substantially easier to reduce and more difficult to oxidize than the formyl or unsubstituted corroles. In addition, the colorimetric and spectral detection of 11 different anions (X) in the form of tetrabutylammonium salts (TBAX, X = PF6-, OAc-, H2PO4-, CN-, HSO4-, NO3-, ClO4-, F-, Cl-, Br-, and I-) were also investigated in nonaqueous media. Of the investigated anions, only CN- was found to induce changes in the UV-vis and 1H NMR spectra of the ß-DCV metallocorroles. This data revealed that CuTPC(MN) and AgTPC(MN) act as chemodosimeters for selective cyanide ion detection via a nucleophilic attack at the vinylic carbon of the DCV substituent, while (PPh3)CoTPC(MN) acts as a chemosensor for cyanide ion sensing via axial coordination to the cobalt metal center. A low-limit detection of cyanide ions was observed at 1.69 ppm for CuTPC(MN) and 1.17 ppm for AgTPC(MN) in toluene.

5.
Inorg Chem ; 62(13): 5292-5301, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36958040

RESUMO

Two new meso-substituted oxido-molybdenum corroles were synthesized and characterized by various spectroscopic techniques. In the thermogram, MoO[TTC] (1) exhibited excellent thermal stability up to 491 °C while MoO[TNPC] (2) exhibited good stability up to 318 °C. The oxidation states of the molybdenum(V) were verified by electron paramagnetic resonance (EPR) spectroscopy and exhibited an axial compression with dxy1 configuration. Oxido-molybdenum(V) complexes were utilized for the selective epoxidation of various olefins with high TOF values (2066-3287 h-1) in good yields in a CH3CN/H2O (3:2, v/v) mixture in the presence of hydrogen peroxide as a green oxidant and NaHCO3 as a promoter. The oxidative bromination catalytic activity of oxido-molybdenum(V) complexes in an aqueous medium has been reported for the first time. Surprisingly, MoO[TNPC] (2) biomimics of the vanadium bromoperoxidase (VBPO) enzyme activity exhibited remarkably high TOF values (36 988-61 646 h-1) for the selective oxidative bromination of p-cresol and other phenol derivatives. Catalyst MoO[TNPC] (2) exhibited higher TOF values and better catalytic activity than catalyst MoO[TTC] (1) due to the presence of electron-withdrawing nitro groups evident from cyclic voltammetric studies.

6.
Inorg Chem ; 61(48): 19289-19301, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36403252

RESUMO

A new series of nonplanar and unsymmetrically ß-functionalized "push-pull" copper corroles, CuTPC(CHO)R7 [R = H, Br, Ph, Me, or 2-thienyl (Th)], were synthesized and characterized to elucidate the effect of ß-functionalization and nonplanarity on the photophysical, redox, and nonlinear optical (NLO) properties on the corrole ring. The synthetic route to unsymmetrically ß-octasubstituted copper corroles includes bromination of CuTPC(CHO) to get CuTPC(CHO)Br7 in 80% yield, which was further subjected to the Pd-catalyzed Suzuki reaction. CuTPC(CHO)Br7 exhibited a large red shift in the Soret band (Δλmax = 35-40 nm) and both the Q bands (Δλmax = 10-50 nm), as compared to CuTPC and CuTPC(CHO). CuTPC(CHO)Br7 was 510 and 290 mV anodically shifted in the first oxidation and the first reduction compared to CuTPC owing to the strong -I effect of CHO and Br groups. Density functional theory studies revealed that all the ß-octasubstituted copper corroles exhibited highly nonplanar saddle-shape conformation of the corrole ring. Very high torsional saddling was observed for CuTPC(CHO)Th7 (79-83°) than that for CuTPC (49-53°), even larger than that for CuTPCBr8 (67-70°). Femtosecond laser-induced third-order NLO studies from these copper corroles showed strong two-photon absorption cross-sections (0.48-6.98 × 104 GM) and self-focusing-type positive nonlinear refraction behavior. The observed structure-dependent two-photon absorption coefficients (ß) are in the range of ∼2.7-20.9 × 10-12 m/W, and the n2 values are in the range of ∼0.64-6.45 × 10-18 m2/W. The present results may facilitate a new window for these copper corroles in nonlinear optical devices, femtosecond optical limiters, and many other ultrafast photonic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...