Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 12: 645038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859663

RESUMO

Pearl millet (Pennisetum glaucum R. Br.) is an important staple and nutritious food crop in the semiarid and arid ecologies of South Asia (SA) and Sub-Saharan Africa (SSA). In view of climate change, depleting water resources, and widespread malnutrition, there is a need to accelerate the rate of genetic gains in pearl millet productivity. This review discusses past strategies and future approaches to accelerate genetic gains to meet future demand. Pearl millet breeding in India has historically evolved very comprehensively from open-pollinated varieties development to hybrid breeding. Availability of stable cytoplasmic male sterility system with adequate restorers and strategic use of genetic resources from India and SSA laid the strong foundation of hybrid breeding. Genetic and cytoplasmic diversification of hybrid parental lines, periodic replacement of hybrids, and breeding disease-resistant and stress-tolerant cultivars have been areas of very high priority. As a result, an annual yield increase of 4% has been realized in the last three decades. There is considerable scope to further accelerate the efforts on hybrid breeding for drought-prone areas in SA and SSA. Heterotic grouping of hybrid parental lines is essential to sustain long-term genetic gains. Time is now ripe for mainstreaming of the nutritional traits improvement in pearl millet breeding programs. New opportunities are emerging to improve the efficiency and precision of breeding. Development and application of high-throughput genomic tools, speed breeding, and precision phenotyping protocols need to be intensified to exploit a huge wealth of native genetic variation available in pearl millet to accelerate the genetic gains.

2.
Sci Rep ; 11(1): 5456, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750837

RESUMO

Deficit irrigation (DI) has been emerging as an important technique for enhancing crop water productivity (WP). However, advantage of DI under varying nitrogen (N) application rates remains unclear. Field experiments were conducted during 2012-2014 to investigate the impacts of six irrigation levels[FI (full irrigation), DI10, DI20, DI30, DI40 and DI50, with irrigation amount of 100, 90, 80, 70, 60 and 50% of ETc, respectively) and four N application rates (N0, N10, N20 and N30, with 0, 10, 20 and 30 kg N ha-1, respectively) on WP, yield, quality, and net economic return of peanut in hot arid region of India. We used Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS) method to obtain the optimal combination of irrigation and N rates. Both irrigation level and nitrogen dose had significant effects on yield and quality parameters examined in the study. Relative to FI, DI40 and DI50 significantly reduced yield (40.2-62.1%), economic benefit (70.8-118.5%), WP (8.2-33.0%), and kernel oil content (7.5-11.9%), but DI20 increased WP by 17.1% with only marginal reduction in economic benefit (2.6%), and yield (3.2%). Compared to N0, the N30 had 1.7, 1.1, and 1.6-folds increased yield, oil content in the kernel, and WP, respectively. Among all treatments, DI0N30 had the greatest yield and net return; DI20N30 had greatest WP and oil content in the kernel. TOPSIS analysis showed that DI20N30 was optimal in balancing of WP, yield, net return, and quality of peanut in northwestern arid India. The results have direct implications for improving irrigation water and N management for irrigated crops in arid regions.

3.
Nat Biotechnol ; 35(10): 969-976, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28922347

RESUMO

Pearl millet [Cenchrus americanus (L.) Morrone] is a staple food for more than 90 million farmers in arid and semi-arid regions of sub-Saharan Africa, India and South Asia. We report the ∼1.79 Gb draft whole genome sequence of reference genotype Tift 23D2B1-P1-P5, which contains an estimated 38,579 genes. We highlight the substantial enrichment for wax biosynthesis genes, which may contribute to heat and drought tolerance in this crop. We resequenced and analyzed 994 pearl millet lines, enabling insights into population structure, genetic diversity and domestication. We use these resequencing data to establish marker trait associations for genomic selection, to define heterotic pools, and to predict hybrid performance. We believe that these resources should empower researchers and breeders to improve this important staple crop.


Assuntos
Agricultura , Clima Desértico , Genoma de Planta , Pennisetum/genética , Característica Quantitativa Herdável , Sequência de Bases , Sequência Conservada , Genes de Plantas , Variação Genética , Estudo de Associação Genômica Ampla , Hibridização Genética , Anotação de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...