Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 253
Filtrar
1.
PLoS One ; 19(5): e0300507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38728300

RESUMO

According to the 2018 WHO R&D Blueprint, Nipah virus (NiV) is a priority disease, and the development of a vaccine against NiV is strongly encouraged. According to criteria used to categorize zoonotic diseases, NiV is a stage III disease that can spread to people and cause unpredictable outbreaks. Since 2001, the NiV virus has caused annual outbreaks in Bangladesh, while in India it has caused occasional outbreaks. According to estimates, the mortality rate for infected individuals ranges from 70 to 91%. Using immunoinformatic approaches to anticipate the epitopes of the MHC-I, MHC-II, and B-cells, they were predicted using the NiV glycoprotein and nucleocapsid protein. The selected epitopes were used to develop a multi-epitope vaccine construct connected with linkers and adjuvants in order to improve immune responses to the vaccine construct. The 3D structure of the engineered vaccine was anticipated, optimized, and confirmed using a variety of computer simulation techniques so that its stability could be assessed. According to the immunological simulation tests, it was found that the vaccination elicits a targeted immune response against the NiV. Docking with TLR-3, 7, and 8 revealed that vaccine candidates had high binding affinities and low binding energies. Finally, molecular dynamic analysis confirms the stability of the new vaccine. Codon optimization and in silico cloning showed that the proposed vaccine was expressed to a high degree in Escherichia coli. The study will help in identifying a potential epitope for a vaccine candidate against NiV. The developed multi-epitope vaccine construct has a lot of potential, but they still need to be verified by in vitro & in vivo studies.


Assuntos
Glicoproteínas , Vírus Nipah , Vacinas Virais , Vírus Nipah/imunologia , Vacinas Virais/imunologia , Glicoproteínas/imunologia , Glicoproteínas/química , Humanos , Infecções por Henipavirus/prevenção & controle , Infecções por Henipavirus/imunologia , Simulação por Computador , Epitopos/imunologia , Epitopos/química , Simulação de Dinâmica Molecular , Nucleocapsídeo/imunologia , Simulação de Acoplamento Molecular
2.
Arch Virol ; 169(5): 102, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630315

RESUMO

A highly divergent bovine calicivirus was identified in an Indian calf with enteritis. The whole genome of this virus was sequenced, revealing distinct amino acid motifs in the polyprotein encoded by open reading frame 1 (ORF1) that are unique to caliciviruses. Phylogenetic analysis showed that it was related to members of the genus Nebovirus of the family Caliciviridae. Although it showed only 33.7-34.2% sequence identity in the VP1 protein to the nebovirus prototype strains, it showed 90.6% identity in VP1 to Kirklareli virus, a nebovirus detected in calves with enteritis in Turkey in 2012. An in-house-designed and optimized reverse transcription polymerase chain reaction (RT-PCR) assay was used to screen 120 archived bovine diarrhoeic fecal samples, 40 each from the Indian states of Uttar Pradesh, Haryana, and Himachal Pradesh, revealing frequent circulation of these divergent caliciviruses in the bovine population, with an overall positivity rate of 64.17% (77/120). This underscores the importance of conducting a comprehensive investigation of the prevalence of these divergent caliciviruses and assessing their associations with other pathogens responsible for enteritis in India.


Assuntos
Caliciviridae , Enterite , Vírus de RNA , Bovinos , Animais , Filogenia , Caliciviridae/genética , Índia/epidemiologia
3.
Res Vet Sci ; 171: 105243, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564980

RESUMO

The rise of Crimean-Congo Hemorrhagic Fever (CCHF), poses a significant global health challenge, urging immediate action and continuous surveillance. With no available vaccines, monitoring pathogen presence is critical to identify at-risk areas promptly. A study was designed to assess the incidence of CCHF virus in goats and cattle using commercial ELISA IgG kits in tribal-dominated regions. Overall, 16% of the samples (n = 63/393) were positive for CCHF virus-specific IgG antibodies, whereas sero-prevalence detected in cattle 11.6% [95% CI:7-17.7] and in goats 18.9% [95% CI: 13.76-24.01], respectively. Statistically, Animal gender and age didn't significantly affect prevalence (p-value >0.05). Our finding indicates unnoticed CCHF virus circulation. Notably, lack of public awareness about zoonotic diseases in the study region was recorded. To combat this emerging tick-borne disease effectively, it's crucial to screen individuals with hemorrhagic manifestations in healthcare settings and active surveillance of ticks to prevent unwarranted public health outbreaks and design preventive interventions.


Assuntos
Doenças das Cabras , Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Animais , Bovinos , Febre Hemorrágica da Crimeia/epidemiologia , Febre Hemorrágica da Crimeia/veterinária , Gado , Saúde Pública , Prevalência , Estudos Soroepidemiológicos , Cabras , Anticorpos Antivirais , Índia/epidemiologia , Imunoglobulina G , Doenças das Cabras/epidemiologia
4.
Microorganisms ; 12(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38674640

RESUMO

Neboviruses (NeVs) from the Caliciviridae family have been linked to enteric diseases in bovines and have been detected worldwide. As viruses rely entirely on the cellular machinery of the host for replication, their ability to thrive in a specific host is greatly impacted by the specific codon usage preferences. Here, we systematically analyzed the codon usage bias in NeVs to explore the genetic and evolutionary patterns. Relative Synonymous Codon Usage and Effective Number of Codon analyses indicated a marginally lower codon usage bias in NeVs, predominantly influenced by the nucleotide compositional constraints. Nonetheless, NeVs showed a higher codon usage bias for codons containing G/C at the third codon position. The neutrality plot analysis revealed natural selection as the primary factor that shaped the codon usage bias in both the VP1 (82%) and VP2 (57%) genes of NeVs. Furthermore, the NeVs showed a highly comparable codon usage pattern to bovines, as reflected through Codon Adaptation Index and Relative Codon Deoptimization Index analyses. Notably, yak NeVs showed considerably different nucleotide compositional constraints and mutational pressure compared to bovine NeVs, which appear to be predominantly host-driven. This study sheds light on the genetic mechanism driving NeVs' adaptability, evolution, and fitness to their host species.

6.
Front Microbiol ; 15: 1342170, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38511004

RESUMO

Introduction: Since 2018, the Indian state of Kerala has reported four Nipah virus (NiV) disease outbreaks, raising concerns about NiV spillover from bats to the human population. Considering this, a cross-sectional study was undertaken in the Pteropus medius bat population around the Nipah virus-affected regions of Kozhikode, Kerala, India, during February, July, and September 2023. Methods: Throat swabs, rectal swabs, and organ samples were collected from bats to test for NiV using the real-time reverse transcriptase polymerase chain reaction (RT-PCR), while serum samples were screened for anti-Nipah IgG antibodies through ELISA. Results: An overall seroprevalence of 20.9% was observed in 272 P. medius bats tested. The throat and rectal swab samples of 321 bats were negative for NiV RNA. However, 4 of 44 P. medius bats tested positive for NiV in their liver/spleen samples. The partial N gene retrieved showed more than 99% similarity with the earlier reported NiV genome from Kerala state, India. Discussion: The findings of the study caution that there is a spillover risk in the region and necessary precautions should be taken.

7.
Indian J Med Res ; 159(2): 223-231, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38517215

RESUMO

BACKGROUND OBJECTIVES: The Omicron sub-lineages are known to have higher infectivity, immune escape and lower virulence. During December 2022 - January 2023 and March - April 2023, India witnessed increased SARS-CoV-2 infections, mostly due to newer Omicron sub-lineages. With this unprecedented rise in cases, we assessed the neutralization potential of individuals vaccinated with ChAdOx1 nCoV (Covishield) and BBV152 (Covaxin) against emerging Omicron sub-lineages. METHODS: Neutralizing antibody responses were measured in the sera collected from individuals six months post-two doses (n=88) of Covishield (n=44) or Covaxin (n=44) and post-three doses (n=102) of Covishield (n=46) or Covaxin (n=56) booster dose against prototype B.1 strain, lineages of Omicron; XBB.1, BQ.1, BA.5.2 and BF.7. RESULTS: The sera of individuals collected six months after the two-dose and the three-dose demonstrated neutralizing activity against all variants. The neutralizing antibody (NAbs) level was highest against the prototype B.1 strain, followed by BA5.2 (5-6 fold lower), BF.7 (11-12 fold lower), BQ.1 (12 fold lower) and XBB.1 (18-22 fold lower). INTERPRETATION CONCLUSIONS: Persistence of NAb responses was comparable in individuals with two- and three-dose groups post six months of vaccination. Among the Omicron sub-variants, XBB.1 showed marked neutralization escape, thus pointing towards an eventual immune escape, which may cause more infections. Further, the correlation of study data with complete clinical profile of the participants along with observations for cell-mediated immunity may provide a clear picture for the sustained protection due to three-dose vaccination as well as hybrid immunity against the newer variants.


Assuntos
Vacinas contra COVID-19 , COVID-19 , ChAdOx1 nCoV-19 , Vacinas de Produtos Inativados , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Vacinação , Anticorpos Antivirais
8.
J Med Virol ; 96(3): e29559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529536

RESUMO

India experienced its sixth Nipah virus (NiV) outbreak in September 2023 in the Kozhikode district of Kerala state. The NiV is primarily transmitted by spillover events from infected bats followed by human-to-human transmission. The clinical specimens were screened using real-time RT-PCR, and positive specimens were further characterized using next-generation sequencing. We describe here an in-depth clinical presentation and management of NiV-confirmed cases and outbreak containment activities. The current outbreak reported a total of six cases with two deaths, with a case fatality ratio of 33.33%. The cases had a mixed presentation of acute respiratory distress syndrome and encephalitis syndrome. Fever was a persistent presentation in all the cases. The Nipah viral RNA was detected in clinical specimens until the post-onset day of illness (POD) 14, with viral load in the range of 1.7-3.3 × 104 viral RNA copies/mL. The genomic analysis showed that the sequences from the current outbreak clustered into the Indian clade similar to the 2018 and 2019 outbreaks. This study highlights the vigilance of the health system to detect and effectively manage the clustering of cases with clinical presentations similar to NiV, which led to early detection and containment activities.


Assuntos
Quirópteros , Infecções por Henipavirus , Vírus Nipah , Animais , Humanos , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/epidemiologia , Surtos de Doenças , Vírus Nipah/genética , Índia/epidemiologia , RNA Viral/genética
9.
Microorganisms ; 12(3)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38543541

RESUMO

Coxsackievirus-A6 (CV-A6) is responsible for more severe dermatological manifestations compared to other enteroviruses such as CV-A10, CV-A16, and EV-A71, causing HFMD in children and adults. Between 2005 and 2007, the recombinant subclade D3/RF-A started to expand globally, and a CV-A6 pandemic started. The study aimed to conduct whole-genome sequencing (WGS) of an isolated CV-A6 strain from currently circulating HFMD cases from India in 2022. Gene-specific RT-PCR and sequencing were used to perform molecular characterization of the isolated virus. Confirmation of these isolates was also performed by transmission electron microscopy and WGS. Among eleven positive clinical enterovirus specimens, eight CV-A6 strains were successfully isolated in the RD cell line. Isolates confirmed the presence of the CV-A6 strain based on VP1 and VP2 gene-specific RT-PCR. Sequences of isolates were clustered and identified as the novel CV-A6 strain of the D3/Y sub-genotype in India. The studies revealed that the D3/Y sub-genotype is being introduced into Indian circulation. The predicted putative functional loops found in VP1 of CV-A6 showed that the nucleotide sequences of the amino acid were a remarkably conserved loop prediction compatible with neutralizing linear epitopes. Therefore, this strain represents a potential candidate for vaccine development and antiviral studies.

10.
Viral Immunol ; 37(2): 101-106, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38315741

RESUMO

Kyasanur Forest Disease Virus (KFDV) is a tick-borne flavivirus that causes life-threatening hemorrhagic fever in humans with case fatality rates of 3-5%. Relatively little is known about the mechanism of its pathogenesis or host immune responses to KFDV infection. Here, we investigated KFDV-specific cellular immune responses in the recovered cases of Kyasanur Forest Disease (KFD). Peripheral blood mononuclear cells of the recovered KFD cases and healthy controls were exposed to γ-inactivated KFDV antigen ex vivo. The proliferation index was determined using an enzyme-linked immunosorbent assay-based lymphoproliferative assay. The frequencies of CD4+ and CD8+ T cells expressing intracellular interferon (IFN)-γ in response to stimulation with γ-inactivated KFDV antigen were determined using flow cytometry. A significant increase in lymphoproliferation and a high frequency of CD4+ and CD8+ T cells secreting IFN-γ against γ-inactivated KFDV antigen were found in the recovered KFD group compared to the healthy control group. In conclusion, the study indicated the generation of cellular immune responses in individuals who recovered from KFD and can be used as indicators of cellular immunity in KFD vaccine studies.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Doença da Floresta de Kyasanur , Humanos , Linfócitos T CD8-Positivos , Leucócitos Mononucleares , Imunidade Celular
11.
Infect Dis (Lond) ; 56(2): 145-156, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37966909

RESUMO

BACKGROUND: In this study, we carried out an investigation of Kyasanur Forest Disease (KFD) suspected human cases reported in Karnataka state, India from December 2018 to June 2019. METHODS: The clinical samples of KFD suspected cases (n = 1955) from 14 districts of Karnataka were tested for KFD using real-time RT-PCR and IgM ELISA. Further, the KFD-negative samples were tested for IgM antibodies against dengue and chikungunya viruses. Monkey samples (n = 276) and tick pools (n = 11582) were also screened using real-time RT-PCR. KFD-positive samples were further analysed using next-generation sequencing along with clinico-epidemiological analysis. RESULTS: Of all, 173 (8.8%) cases tested positive for KFD either by real-time RT-PCR (n = 124), IgM ELISA (n = 53) or both tests (n = 4) from seven districts. Among KFD-negative cases, IgM antibody positivity was observed for dengue (2.6%), chikungunya (5.8%), dengue and chikungunya coinfection (3.7%). KFD cases peaked in January 2019 with fever, conjunctivitis, and myalgia as the predominant symptoms and a mortality of 4.6%. Among confirmed cases, 41% received a single dose and 20% received two doses of the KFD vaccine. Of the seven districts with KFDV positivity, Shivamogga and Hassan districts reported KFD viral RNA positivity in humans, monkeys, and ticks. Sequencing analysis of 2019 cases demonstrated a difference of less than 1.5% amino acid compared to prototype KFDV. CONCLUSION: Although the KFD has been endemic in many districts of Karnataka state, our study confirms the presence of KFDV for the first time in two new districts, i.e. Hassan and Mysore. A comparative analysis of KFDV infection among the KFD-vaccinated and non-vaccinated populations demonstrated an insignificant difference.


Assuntos
Febre de Chikungunya , Dengue , Doença da Floresta de Kyasanur , Animais , Humanos , Doença da Floresta de Kyasanur/epidemiologia , Doença da Floresta de Kyasanur/diagnóstico , Febre de Chikungunya/epidemiologia , Índia/epidemiologia , Imunoglobulina M , Haplorrinos , Dengue/epidemiologia
14.
Methods Protoc ; 6(6)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38133133

RESUMO

Rice is one of the apex food crops in terms of meeting the daily calorific and dietary requirement of the majority of the world population. However, rice productivity is severely limited by various biotic and abiotic attributes, causing a severe threat to global food security. In the use of functional genomics and genome editing for the generation of trait-enhanced genotypes, it is necessary to have an efficient genetic transformation and regeneration protocol. The recalcitrant nature and paucity of efficient and versatile genetic transformation and regeneration protocols for indica cultivars remains a constraint. In the present study, we have optimized a tissue culture method for MTU1010, a mega indica rice variety. We conducted a combinatorial analysis of different plant growth regulators on embryogenic callus induction efficiency, and it was observed that MSB5 medium supplemented with 2.5 mg/L 2-4D and 0.25 mg/L 6-BAP results in maximum embryogenic callus induction, i.e., 92%. The regeneration efficiency of a transformed callus can be enhanced by up to 50% with the supplementation of 1 mg/L kinetin alongside 2.5 mg/L BAP and 0.5 mg/L NAA in the shooting medium. Furthermore, our results unveiled that the pre-activation of Agrobacterium culture for 30 min with 150 µM acetosyringone significantly increased the transformation efficiency of calli. Additionally, descaling the salt concentration to half strength in resuspension and co-cultivation increased the efficiency of transformation up to 33%. Thus, the protocol developed in this study will be instrumental for the genome editing and genetic engineering of indica rice cultivars for functional genomics studies and crop improvement.

15.
Molecules ; 28(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38138601

RESUMO

The uncontrolled spread of drug-resistant tuberculosis (DR-TB) clinical cases necessitates the urgent discovery of newer chemotypes with novel mechanisms of action. Here, we report the chemical synthesis of rationally designed novel transition-state analogues (TSAs) by targeting the cyclization (Cy) domain of phenyloxazoline synthase (MbtB), a key enzyme of the conditionally essential siderophore biosynthesis pathway. Following bio-assay-guided evaluation of TSA analogues preferentially in iron-deprived and iron-rich media to understand target preferentiality against a panel of pathogenic and non-pathogenic mycobacteria strains, we identified a hit, i.e., TSA-5. Molecular docking, dynamics, and MMPBSA calculations enabled us to comprehend TSA-5's stable binding at the active site pocket of MbtB_Cy and the results imply that the MbtB_Cy binding pocket has a strong affinity for electron-withdrawing functional groups and contributes to stable polar interactions between enzyme and ligand. Furthermore, enhanced intracellular killing efficacy (8 µg/mL) of TSA-5 against Mycobacterium aurum in infected macrophages is noted in comparison to moderate in vitro antimycobacterial efficacy (64 µg/mL) against M. aurum. TSA-5 also demonstrates whole-cell efflux pump inhibitory activity against Mycobacterium smegmatis. Identification of TSA-5 by focusing on the modular MbtB_Cy domain paves the way for accelerating novel anti-TB antibiotic discoveries.


Assuntos
Antibacterianos , Mycobacterium tuberculosis , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Simulação de Acoplamento Molecular , Ferro/metabolismo , Mycobacterium smegmatis , Antituberculosos/química
16.
Pathogens ; 12(11)2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38003816

RESUMO

The global re-emergence of monkeypox (Mpox) in non-endemic regions in 2022 has highlighted the critical importance of timely virus detection and robust public health surveillance in assessing outbreaks and their impact. Despite significant Mpox research being conducted worldwide, there is an urgent need to identify knowledge gaps and prioritize key research areas in order to create a roadmap that maximizes the utilization of available resources. The present research article provides a comprehensive mapping of health research priorities aimed at advancing our understanding of Mpox and developing effective interventions for managing its outbreaks, and, as evidenced by the fact that achieving this objective requires close interdisciplinary collaboration. The key research priorities observed were identifying variants responsible for outbreaks; discovering novel biomarkers for diagnostics; establishing suitable animal models; investigating reservoirs and transmission routes; promoting the One Health approach; identifying targets for vaccination; gaining insight into the attitudes, experiences, and practices of key communities, including stigma; and ensuring equity during public health emergencies. The findings of this study hold significant implications for decision making by multilateral partners, including research funders, public health practitioners, policy makers, clinicians, and civil society, which will facilitate the development of a comprehensive plan not only for Mpox but also for other similar life-threatening viral infections.

17.
BMC Health Serv Res ; 23(1): 1288, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-37996862

RESUMO

BACKGROUND: Rapid diagnostic testing may support improved treatment of COVID patients. Understanding COVID testing and care pathways is important for assessing the impact and cost-effectiveness of testing in the real world, yet there is limited information on these pathways in low-and-middle income countries (LMICs). We therefore undertook an expert consultation to better understand testing policies and practices, clinical screening, the profile of patients seeking testing or care, linkage to care after testing, treatment, lessons learnt and expected changes in 2023. METHODS: We organized a qualitative consultation with ten experts from seven LMICs (India, Indonesia, Malawi, Nigeria, Peru, South Africa, and Zimbabwe) identified through purposive sampling. We conducted structured interviews during six regional consultations, and undertook a thematic analysis of responses. RESULTS: Participants reported that, after initial efforts to scale-up testing, the policy priority given to COVID testing has declined. Comorbidities putting patients at heightened risk (e.g., diabetes) mainly relied on self-identification. The decision to test following clinical screening was highly context-/location-specific, often dictated by local epidemiology and test availability. When rapid diagnostic tests were available, public sector healthcare providers tended to rely on them for diagnosis (alongside PCR for Asian/Latin American participants), while private sector providers predominantly used polymerase chain reaction (PCR) tests. Positive test results were generally taken at 'face value' by clinicians, although negative tests with a high index of suspicion may be confirmed with PCR. However, even with a positive result, patients were not always linked to care in a timely manner because of reluctance to receiving care or delays in returning to care centres upon clinical deterioration. Countries often lacked multiple components of the range of therapeutics advised in WHO guidelines: notably so for oral antivirals designed for high-risk mild patients. Severely ill patients mostly received corticosteroids and, in higher-resourced settings, tocilizumab. CONCLUSIONS: Testing does not always prompt enhanced care, due to reluctance on the part of patients and limited therapeutic availability within clinical settings. Any analysis of the impact or cost-effectiveness of testing policies post pandemic needs to either consider investment in optimal treatment pathways or constrain estimates of benefits based on actual practice.


Assuntos
COVID-19 , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Países em Desenvolvimento , Teste para COVID-19 , Procedimentos Clínicos , Encaminhamento e Consulta
19.
Res Sq ; 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37886438

RESUMO

Background: Rapid diagnostic testing may support improved treatment of COVID patients. Understanding COVID testing and care pathways is important for assessing the impact and cost-effectiveness of testing in the real world, yet there is limited information on these pathways in low-and-middle income countries (LMICs). We therefore undertook an expert consultation to better understand testing policies and practices, clinical screening, the profile of patients seeking testing or care, linkage to care after testing, treatment, lessons learnt and expected changes in 2023 in LMICs. Methods: We organized a qualitative consultation with ten experts from seven LMICs identified through purposive sampling. We conducted structured interviews during six regional consultations, and undertook a thematic analysis of the responses to our questions. Results: Participants reported that, after initial efforts to scale-up testing (which often encountered delays), the policy priority given to COVID testing has declined. Comorbidities putting patients at heightened risk (e.g., diabetes) mainly relied on self-identification. The decision to test following clinical screening was highly context- and location-specific, often dictated by local epidemiology and test availability. When rapid diagnostic tests were available, public sector healthcare providers tended to rely on them for diagnosis, while private sector providers predominantly used polymerase chain reaction (PCR) tests. Positive test results were generally taken at 'face value' by clinicians, although negative tests with a high index of suspicion may be confirmed with PCR. However, even with a positive result, patients were not always linked to care in a timely manner because of reluctance to receiving care or delays in returning to care centres upon clinical deterioration. Countries often lacked multiple components of the range of therapeutics advised in WHO guidelines: notably so for oral antivirals designed for high-risk mild patients. Severely ill patients mostly received corticosteroids and, in higher-resourced settings, tocilizumab. Conclusions: Testing does not always prompt enhanced care, due to reluctance on the part of patients and limited therapeutic availability within clinical settings. Any analysis of the impact or cost-effectiveness of testing policies post pandemic needs to either consider investment in optimal treatment pathways or constrain estimates of benefits based on actual practice.

20.
Microb Genom ; 9(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37905988

RESUMO

Hand, foot and mouth disease (HFMD) is a common childhood infectious disease, caused by enteroviruses (EVs), which can present with typical or atypical lesions. The illness is self-limiting, but it can also have serious complications. Since 1997, HFMD infections have become endemic and have increased to epidemic proportions across the Asia Pacific region, including India. Coxsackievirus-A16 (CV-A16) outbreaks occurred in India from 2005 onwards, although the clinical symptoms were noticeably different during this period. Understanding the population dynamics of enteroviruses that cause HFMD is crucial in the post-polio era because one of the circulating strain may replace another as the dominant strain. The aim of this study is to describe the genetic features of the CV-A16 strains isolated from hand, foot and mouth disease (HFMD) patients in India. Reverse transcription PCR (RT-PCR) and cell-culture-based isolation of CV-A16 was done from the 55 clinical samples. The entire genome of the CV-A16 isolate was performed from the seven isolates. After the sequences were analysed, a phylogenetic tree was created using bioinformatics tools. The total genomic length obtained was 7411 base pairs (bp). Nucleotide similarity across various regions, including 5'UTR, P1, P2 and 3'UTR, ranged from 87.0-97.9 %, 77.0-95.4 %, 80.3-96.9 %, and 77.9-96.2 %, respectively. Correspondingly, similarities in the VP1 region's nucleotide and amino acid sequences were 91.4-96.4 % and 99.3-99.7 %, respectively. Phylogenetic analysis highlighted that CV-A16 strains identified in Pune, Maharashtra, were grouped within the same cluster. The analysed CV-A16 isolates in this study aligned with subgenotype B1c. These findings have far-reaching implications for the surveillance, prevention and management of HFMD and CV-A16. Monitoring the dynamics of CV-A16 strains, informed by the genetic characteristics identified here, will significantly impact strategies aimed at tackling HFMD and its associated public health challenges.


Assuntos
Enterovirus , Doença de Mão, Pé e Boca , Humanos , Criança , Doença de Mão, Pé e Boca/epidemiologia , Filogenia , Índia/epidemiologia , Enterovirus/genética , Nucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...