Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Stem Cell Res Ther ; 19(3): 307-315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-36880183

RESUMO

Genome editing has enhanced our ability to understand the role of genetics in a number of diseases by facilitating the development of more precise cellular and animal models to study pathophysiological processes. These advances have shown extraordinary promise in a multitude of areas, from basic research to applied bioengineering and biomedical research. Induced pluripotent stem cells (iPSCs) are known for their high replicative capacity and are excellent targets for genetic manipulation as they can be clonally expanded from a single cell without compromising their pluripotency. Clustered, regularly interspaced short palindromic repeats (CRISPR) and CRISPR/Cas RNA-guided nucleases have rapidly become the method of choice for gene editing due to their high specificity, simplicity, low cost, and versatility. Coupling the cellular versatility of iPSCs differentiation with CRISPR/Cas9-mediated genome editing technology can be an effective experimental technique for providing new insights into the therapeutic use of this technology. However, before using these techniques for gene therapy, their therapeutic safety and efficacy following models need to be assessed. In this review, we cover the remarkable progress that has been made in the use of genome editing tools in iPSCs, their applications in disease research and gene therapy as well as the hurdles that remain in the actual implementation of CRISPR/Cas systems.


Assuntos
Edição de Genes , Células-Tronco Pluripotentes Induzidas , Animais , Edição de Genes/métodos , Sistemas CRISPR-Cas/genética , Terapia Genética/métodos , Diferenciação Celular
2.
Endocrinology ; 165(1)2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-38066669

RESUMO

X-linked hypophosphatemia (XLH) is the most common form of hereditary hypophosphatemic rickets. The genetic basis for XLH is loss of function mutations in the phosphate-regulating endopeptidase X-linked (PHEX), which leads to increased circulating fibroblast growth factor 23 (FGF23). This increase in FGF23 impairs activation of vitamin D and attenuates renal phosphate reabsorption, leading to rickets. Previous studies have demonstrated that ablating FGF23 in the Hyp mouse model of XLH leads to hyperphosphatemia, high levels of 1,25-dihydroxyvitamin D, and is not associated with the development of rickets. Studies were undertaken to define a role for the increase in 1,25-dihydroxyvitamin D levels in the prevention of rickets in Hyp mice lacking FGF23. These mice were mated to mice lacking Cyp27b1, the enzyme responsible for activating vitamin D metabolites, to generate Hyp mice lacking both FGF23 and 1,25-dihydroxyvitamin D (FCH mice). Mice were fed a special diet to maintain normal mineral ion homeostasis. Despite normal mineral ions, Hyp mice lacking both FGF23 and Cyp27b1 developed rickets, characterized by an interrupted, expanded hypertrophic chondrocyte layer and impaired hypertrophic chondrocyte apoptosis. This phenotype was prevented when mice were treated with 1,25-dihydroxyvitamin D from day 2 until sacrifice on day 30. Interestingly, mice lacking FGF23 and Cyp27b1 without the PHEX mutation did not exhibit rickets. These findings define an essential PHEX-dependent, FGF23-independent role for 1,25-dihydroxyvitamin D in XLH and have important therapeutic implications for the treatment of this genetic disorder.


Assuntos
Raquitismo Hipofosfatêmico Familiar , Animais , Camundongos , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Raquitismo Hipofosfatêmico Familiar/metabolismo , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Lâmina de Crescimento/metabolismo , Minerais/uso terapêutico , Fosfatos , Vitamina D/metabolismo
3.
Anim Biotechnol ; 34(9): 5055-5066, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37870061

RESUMO

Electroporation is a widely used method for delivering CRISPR components into cells; however, it presents challenges when applied to difficult-to-transfect cells like adult buffalo fibroblasts. In this study, the ITGB2 gene (encoding the CD18 protein), plays vital for cellular adhesion and immune responses, was selected for editing experiments. To optimize electroporation conditions, we investigated parameters such as electric field strength, pulse duration, plasmid DNA amount, cuvette type, and cell type. The best transfection rates were obtained in a 4 mm gap cuvette with a single 20-millisecond pulse of 300 V using a 10 µg of all-in-one CRISPR plasmid for 106 cells in 100 µL of electroporation buffer. Increasing DNA quantity enhanced transfection rates but compromised cell viability. The 4 mm cuvette gap had high transfection rates than the 2 mm gap, and newborn cells exhibited higher transfection rates than adult cells. We achieved transfection rates of 10-12% with a cell viability of 25-30% for adult fibroblast cells. Subsequently, successfully edited the ITGB2 gene with a 30% editing efficiency, confirmed through various analysis methods, including T7E1 assay, TIDE and ICE analysis, and TA cloning. In conclusion, electroporation conditions reported here can edit buffalo gene(s) for various biotechnological research applications.


Assuntos
Búfalos , Edição de Genes , Animais , Edição de Genes/métodos , Búfalos/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Eletroporação , Transfecção , Fibroblastos , DNA , Sistemas CRISPR-Cas/genética
4.
Nat Commun ; 14(1): 6050, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770425

RESUMO

Solvent shielding of the amide hydrogen bond donor (NH groups) through chemical modification or conformational control has been successfully utilized to impart membrane permeability to macrocyclic peptides. We demonstrate that passive membrane permeability can also be conferred by masking the amide hydrogen bond acceptor (>C = O) through a thioamide substitution (>C = S). The membrane permeability is a consequence of the lower desolvation penalty of the macrocycle resulting from a concerted effect of conformational restriction, local desolvation of the thioamide bond, and solvent shielding of the amide NH groups. The enhanced permeability and metabolic stability on thioamidation improve the bioavailability of a macrocyclic peptide composed of hydrophobic amino acids when administered through the oral route in rats. Thioamidation of a bioactive macrocyclic peptide composed of polar amino acids results in analogs with longer duration of action in rats when delivered subcutaneously. These results highlight the potential of O to S substitution as a stable backbone modification in improving the pharmacological properties of peptide macrocycles.


Assuntos
Amidas , Tioamidas , Ratos , Animais , Amidas/química , Tioamidas/química , Disponibilidade Biológica , Peptídeos , Permeabilidade , Aminoácidos , Solventes
5.
Nat Commun ; 14(1): 4808, 2023 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558722

RESUMO

Chemokine receptors constitute an important subfamily of G protein-coupled receptors (GPCRs), and they are critically involved in a broad range of immune response mechanisms. Ligand promiscuity among these receptors makes them an interesting target to explore multiple aspects of biased agonism. Here, we comprehensively characterize two chemokine receptors namely, CXCR4 and CXCR7, in terms of their transducer-coupling and downstream signaling upon their stimulation by a common chemokine agonist, CXCL12, and a small molecule agonist, VUF11207. We observe that CXCR7 lacks G-protein-coupling while maintaining robust ßarr recruitment with a major contribution of GRK5/6. On the other hand, CXCR4 displays robust G-protein activation as expected but exhibits significantly reduced ßarr-coupling compared to CXCR7. These two receptors induce distinct ßarr conformations even when activated by the same agonist, and CXCR7, unlike CXCR4, fails to activate ERK1/2 MAP kinase. We also identify a key contribution of a single phosphorylation site in CXCR7 for ßarr recruitment and endosomal localization. Our study provides molecular insights into intrinsic-bias encoded in the CXCR4-CXCR7 system with broad implications for drug discovery.


Assuntos
Receptores CXCR , Receptores CXCR/genética , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais , Proteínas de Ligação ao GTP , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quimiocina CXCL12/metabolismo
6.
iScience ; 26(9): 107548, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37636062

RESUMO

Low circulating phosphate (Pi) leads to rickets, characterized by expansion of the hypertrophic chondrocytes (HCs) in the growth plate due to impaired HC apoptosis. Studies in HCs demonstrate that Pi activates the Raf/MEK/ERK1/2 and mitochondrial apoptotic pathways. To determine how Pi activates these pathways, a small-molecule screen was undertaken to identify inhibitors of Pi-induced ERK1/2 phosphorylation in HCs. Vascular endothelial growth factor receptor 2 (VEGFR2) was identified as a target. In vitro studies in HCs demonstrate that VEGFR2 inhibitors block Pi-induced pERK1/2 and caspase-9 cleavage. Like Pi, rhVEGF activates ERK1/2 and caspase-9 in HCs and induces phosphorylation of VEGFR2, confirming that Pi activates this signaling pathway in HCs. Chondrocyte-specific depletion of VEGFR2 leads to an increase in HCs, impaired vascular invasion, and a decrease in HC apoptosis. Thus, these studies define a role for VEGFR2 in transducing Pi signals and mediating its effects on growth plate maturation.

7.
Neurochem Res ; 48(10): 2936-2968, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37278860

RESUMO

Despite ongoing advancements in research, the inability of therapeutics to cross the blood-brain barrier (BBB) makes the treatment of neurological disorders (NDs) a challenging task, offering only partial symptomatic relief. Various adverse effects associated with existing approaches are another significant barrier that prompts the usage of structurally diverse phytochemicals as preventive/therapeutic lead against NDs in preclinical and clinical settings. Despite numerous beneficial properties, phytochemicals suffer from poor pharmacokinetic profile which limits their pharmacological activity and necessitates the utility of nanotechnology for efficient drug delivery. Nanocarriers have been shown to be proficient carriers that can enhance drug delivery, bioavailability, biocompatibility, and stability of phytochemicals. We, thus, conducted a meticulous literature survey using several electronic databases to gather relevant studies in order to provide a comprehensive summary about the use of nanocarriers in delivering phytochemicals as a treatment approach for NDs. Additionally, the review highlights the mechanisms of drug transport of nanocarriers across the BBB and explores their potential future applications in this emerging field.


Assuntos
Portadores de Fármacos , Nanopartículas , Portadores de Fármacos/química , Nanopartículas/química , Encéfalo , Barreira Hematoencefálica , Sistemas de Liberação de Medicamentos , Compostos Fitoquímicos/uso terapêutico , Compostos Fitoquímicos/farmacologia
8.
Cell Reprogram ; 25(3): 121-127, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37042654

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system and somatic cell nuclear transfer (SCNT) have been used to produce genome-edited farm animal species for improved production and health traits; however, these tools are rarely used in the buffalo and can play a pivotal role in milk and meat production in tropical and subtropical countries. In this study, we aimed to produce myostatin (MSTN) gene-edited embryos of the Murrah buffalo using the CRISPR/Cas9 system and SCNT. For this, fibroblast cells were electroporated with sgRNAs carrying all-in-one CRISPR/Cas9 plasmids targeting the first exon of the MSTN gene. Following puromycin selection, single-cell clonal populations were established and screened using the TA cloning and Sanger sequencing methods. Of eight single-cell clonal populations, one with a monoallelic and another with a biallelic heterozygous gene editing event were identified. These two gene-edited clonal cell populations were successfully used to produce blastocyst-stage embryos using the handmade cloning method. This work establishes the technical foundation for generation of genome-edited cloned embryos in the buffalo.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Animais , Edição de Genes/métodos , Técnicas de Transferência Nuclear/veterinária , Clonagem de Organismos , Blastocisto
9.
Front Microbiol ; 14: 986729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36819024

RESUMO

The emergence and rapid evolution of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) caused a global crisis that required a detailed characterization of the dynamics of mutational pattern of the viral genome for comprehending its epidemiology, pathogenesis and containment. We investigated the molecular evolution of the SASR-CoV-2 genome during the first, second and third waves of COVID-19 in Uttar Pradesh, India. Nanopore sequencing of the SARS-CoV-2 genome was undertaken in 544 confirmed cases of COVID-19, which included vaccinated and unvaccinated individuals. In the first wave (unvaccinated population), the 20A clade (56.32%) was superior that was replaced by 21A Delta in the second wave, which was more often seen in vaccinated individuals in comparison to unvaccinated (75.84% versus 16.17%, respectively). Subsequently, 21A delta got outcompeted by Omicron (71.8%), especially the 21L variant, in the third wave. We noticed that Q677H appeared in 20A Alpha and stayed up to Delta, D614G appeared in 20A Alpha and stayed in Delta and Omicron variants (got fixed), and several other mutations appeared in Delta and stayed in Omicron. A cross-sectional analysis of the vaccinated and unvaccinated individuals during the second wave revealed signature combinations of E156G, F157Del, L452R, T478K, D614G mutations in the Spike protein that might have facilitated vaccination breach in India. Interestingly, some of these mutation combinations were carried forward from Delta to Omicron. In silico protein docking showed that Omicron had a higher binding affinity with the host ACE2 receptor, resulting in enhanced infectivity of Omicron over the Delta variant. This work has identified the combinations of key mutations causing vaccination breach in India and provided insights into the change of [virus's] binding affinity with evolution, resulting in more virulence in Delta and more infectivity in Omicron variants of SARS-CoV-2. Our findings will help in understanding the COVID-19 disease biology and guide further surveillance of the SARS-CoV-2 genome to facilitate the development of vaccines with better efficacies.

10.
Animals (Basel) ; 14(1)2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-38200865

RESUMO

Somatic cell nuclear transfer or cytoplasm microinjection has widely been used to produce genome-edited farm animals; however, these methods have several drawbacks which reduce their efficiency. In the present study, we describe an easy adaptable approach for the introduction of mutations using CRISPR-Cas9 electroporation of zygote (CRISPR-EP) in buffalo. The goal of the study was to determine the optimal conditions for an experimental method in which the CRISPR/Cas9 system is introduced into in vitro-produced buffalo zygotes by electroporation. Electroporation was performed using different combinations of voltage, pulse and time, and we observed that the electroporation in buffalo zygote at 20 V/mm, 5 pulses, 3 msec at 10 h post insemination (hpi) resulted in increased membrane permeability and higher knockout efficiency without altering embryonic developmental potential. Using the above parameters, we targeted buffalo POU5F1 gene as a proof of concept and found no variations in embryonic developmental competence at cleavage or blastocyst formation rate between control, POU5F1-KO, and electroporated control (EC) embryos. To elucidate the effect of POU5F1-KO on other pluripotent genes, we determined the relative expression of SOX2, NANOG, and GATA2 in the control (POU5F1 intact) and POU5F1-KO-confirmed blastocyst. POU5F1-KO significantly (p ≤ 0.05) altered the expression of SOX2, NANOG, and GATA2 in blastocyst stage embryos. In conclusion, we standardized an easy and straightforward protocol CRISPR-EP method that could be served as a useful method for studying the functional genomics of buffalo embryos.

11.
Org Biomol Chem ; 20(44): 8584-8598, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36326294

RESUMO

Chlorophyll, the principal photoacceptor of green plants, plays a pivotal role in photosynthesis. In the recent past, chlorophyll has also been utilized as an efficient organo-photocatalyst in several organic syntheses. The inexpensive, ubiquitous nature of chlorophyll endorses it as an appealing green alternative to transition metal photocatalysts. This review is the first attempt to showcase and analyze the photocatalytic activity of chlorophyll in effecting different organic transformations. We intend to provide a holistic overview of the role of chlorophyll starting from photosynthesis to its contemporary synthetic applications in visible light photocatalysis. In addition, the photophysical and electrochemical properties of chlorophyll are elaborated to attain a clearer understanding of its mode of action as a visible light photocatalyst.


Assuntos
Clorofila , Elementos de Transição , Catálise , Luz , Elementos de Transição/química , Técnicas de Química Sintética
12.
Prog Mol Biol Transl Sci ; 193(1): 99-117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36357081

RESUMO

Pain sensation is a normal physiological response to alert and prevent further tissue damage. It involves the perception of external stimuli by somatosensory neurons, then transmission of the message to various other types of neurons present in the spinal cord and brain to generate an appropriate response. Currently available analgesics exhibit very modest efficacy, and that too in only a subset of patients with chronic pain conditions, particularly neuropathic pain. The G protein-coupled receptors (GPCRs) are expressed on presynaptic, postsynaptic terminals, and soma of somatosensory neurons, which binds to various types of ligands to modulate neuronal activity and thus pain sensation in both directions. Fundamentally, neuropathic pain arises due to aberrant neuronal plasticity, which includes the sensitization of peripheral primary afferents (dorsal root ganglia and trigeminal ganglia) and the sensitization of central nociceptive neurons in the spinal cord or trigeminal nucleus or brain stem and cortex. Owing to the expression profiles of GPCRs in somatosensory neurons and other neuroanatomical regions involved in pain processing and transmission, this article shall focus only on four families of GPCRs: 1- Opioid receptors, 2-Cannabinoid receptors, 3-Adenosine receptors, and 4-Chemokine receptors.


Assuntos
Neuralgia , Humanos , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Gânglios Espinais/metabolismo , Medula Espinal/metabolismo , Neurônios/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
13.
Bioorg Chem ; 129: 106202, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272252

RESUMO

Efforts have been devoted for the discovery and development of positive allosteric modulators (PAMs) of 5-HT2CR because of their potential advantages over the orthosteric agonist like Lorcaserin that was withdrawn from the market. On the other hand, pursuing a positive ago-allosteric modulator (PAAM) is considered as beneficial particularly when an agonist is not capable of affecting the potency of the endogenous agonist sufficiently. In search of a suitable PAAM of 5-HT2CR we adopted an in silico based approach that indicated the potential of the 3-(1-hydroxycycloalkyl) substituted isoquinolin-1-one derivatives against the 5-HT2CR as majority of these molecules interacted with the site other than that of Lorcaserin with superior docking scores. These compounds along with the regioisomeric 3-methyleneisoindolin-1-one derivatives were prepared via the Cu(OAc)2 catalyzed coupling of 2-iodobenzamide with 1-ethynylcycloalkanol under ultrasound irradiation. According to the in vitro studies, most of these compounds were not only found to be potent and selective agonists but also emerged as PAAM of 5-HT2CR whereas Lorcaserin did not show PAAM activities. According to the SAR study the isoquinolin-1(2H)-ones appeared as better PAAM than isoindolin-1-ones whereas the presence of hydroxyl group appeared to be crucial for the activity. With the potent PAAM activity for 5-HT2CR (EC50 = 1 nM) and 107 and 86-fold selectivity towards 5-HT2C over 5-HT2A and 5-HT2B the compound 4i was identified as a hit molecule. The compound showed good stability in male BALB/c mice brain homogenate (∼85 % remaining after 2 h), moderate stability in the presence of rat liver microsomes (42 % remaining after 1 h) and acceptable PK properties with fast reaching in the brain maintaining âˆ¼ 1:1 brain/plasma concentration ratio. The compound at a dose of 50 mg/kg exhibited decreased trend in the food intake starting from day 3 in S.D. rats, which reached significant by 5th day, and the effect was comparable to Lorcaserin (10 mg/kg) on day 5. Thus, being the first example of PAAM of 5-HT2CR the compound 4i is of further medicinal interest.


Assuntos
Indóis , Isoquinolinas , Agonistas do Receptor 5-HT2 de Serotonina , Animais , Masculino , Camundongos , Ratos , Encéfalo , Agonistas do Receptor 5-HT2 de Serotonina/síntese química , Agonistas do Receptor 5-HT2 de Serotonina/química , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Camundongos Endogâmicos BALB C , Isoquinolinas/síntese química , Isoquinolinas/química , Isoquinolinas/farmacologia , Indóis/síntese química , Indóis/química , Indóis/farmacologia
14.
J Org Chem ; 87(11): 7350-7364, 2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35587158

RESUMO

Pyrazolo[1,5-a]quinoxalin-4(5H)-one derivatives as novel opioid receptor modulators have been synthesized via copper-catalyzed oxidative [3 + 2]-annulation of quinoxalin-2(1H)-one and oxime-O-acetates. This hydrazine-free C-C and N-N bond formation strategy starts with the generation of C2N1 synthon using oxime acetate, which reacts in a [3 + 2] manner with quinoxalin-2(1H)-one, followed by oxidative aromatization. The synthesized compounds were tested against opioid receptors, of which eight compounds exhibited an antagonistic effect with EC50 < 5 µM at various opioid receptors. Molecular docking studies were performed to identify the binding of active pyrazolo[1,5-a]quinoxalin-4(5H)-one ligands with hKOR protein. Docking results indicated that compounds 3d and 3g participate in hydrogen bonding with the hydroxyl group of T111 of the active site pocket residue.


Assuntos
Oximas , Quinoxalinas , Catálise , Cobre , Ésteres , Simulação de Acoplamento Molecular , Estresse Oxidativo , Oximas/farmacologia , Quinoxalinas/química , Quinoxalinas/farmacologia , Receptores Opioides
15.
Andrologia ; 54(7): e14431, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35451101

RESUMO

Sperm mitochondrion is one of the major susceptible organelles that get damaged during cryopreservation. The study aimed to minimize mitochondrial dysfunction and oxidative stress during sperm cryopreservation using mitochondria-specific antioxidants. For this, semen was collected from five buffalo bulls (3 ejaculates/bull). The ejaculates were diluted in an low-density lipoprotein-based extender and divided into four equal aliquots. Mitochondria-targeted antioxidant (MitoQ) was added at a final concentration of 0 (control), 0.02, 0.2 and 2 µM separately in each aliquotes and cryopreserved. The addition of MitoQ at a concentration of 0.02 µM improved post-thaw sperm motility, plasma membrane integrity and able to sustain sperm motility for a longer time. To investigate MitoQ's effects on mitochondrial function, we measured mitochondrial membrane potential (MMP) using JC-1 dye, superoxide production using Mitosox assay, and lipid peroxidation by TBARS assay. The supplementation of 0.02 µM MitoQ in the extender prevented the significant reduction of MMP and reduced superoxide production resulting in lower lipid peroxidation of sperm plasma membrane after cryopreservation. Further, we found that a higher concentration of MitoQ decreases MMP and increases mitochondrial superoxide production. In conclusion, MitoQ @ 0.02 µM can alleviate oxidative stress by regulating mitochondrial functionality in spermatozoa during cryopreservation.


Assuntos
Antioxidantes , Preservação do Sêmen , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Búfalos/fisiologia , Criopreservação/métodos , Crioprotetores/farmacologia , Masculino , Mitocôndrias/metabolismo , Análise do Sêmen , Preservação do Sêmen/métodos , Motilidade dos Espermatozoides , Espermatozoides , Superóxidos/metabolismo
16.
Org Biomol Chem ; 19(43): 9433-9438, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34676851

RESUMO

Photocatalytic syntheses of quinoline-2(1H)-ones, isoquinoline-1(2H)-ones and 1,2,4-trioxanes were achieved by selective photo-induced electron transfer (PET) and energy transfer (EnT), respectively, by chlorophyll under visible light irradiation. Quinoline-2(1H)-ones, isoquinoline-1(2H)-ones and 1,2,4-trioxanes are biologically potent scaffolds and their syntheses following mild reaction protocols are highly sought after. This work showcases the divergent photocatalytic roles of chlorophyll viz., electron transfer in the case of quinolines or isoquinolines and energy transfer with allyl alcohols as substrates, affording their aerobic oxidation under green reaction conditions. The mechanistic investigations affirm that the catalytic cycle follows the electron-transfer pathway in carrying out the oxidation of N-alkyl(iso)quinolinium salts. Furthermore, the method provides an environmentally benign, simple reaction strategy for organic transformations of (N)-heterocycles.


Assuntos
Quinolinas
17.
Proc Natl Acad Sci U S A ; 118(26)2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34172578

RESUMO

Job syndrome is a rare genetic disorder caused by STAT3 mutations and primarily characterized by immune dysfunction along with comorbid skeleton developmental abnormalities including osteopenia, recurrent fracture of long bones, and scoliosis. So far, there is no definitive cure for the skeletal defects in Job syndrome, and treatments are limited to management of clinical symptoms only. Here, we have investigated the molecular mechanism whereby Stat3 regulates skeletal development and osteoblast differentiation. We showed that removing Stat3 function in the developing limb mesenchyme or osteoprogenitor cells in mice resulted in shortened and bow limbs with multiple fractures in long bones that resembled the skeleton symptoms in the Job Syndrome. However, Stat3 loss did not alter chondrocyte differentiation and hypertrophy in embryonic development, while osteoblast differentiation was severely reduced. Genome-wide transcriptome analyses as well as biochemical and histological studies showed that Stat3 loss resulted in down-regulation of Wnt/ß-catenin signaling. Restoration of Wnt/ß-catenin signaling by injecting BIO, a small molecule inhibitor of GSK3, or crossing with a Lrp5 gain of function (GOF) allele, rescued the bone reduction phenotypes due to Stat3 loss to a great extent. These studies uncover the essential functions of Stat3 in maintaining Wnt/ß-catenin signaling in early mesenchymal or osteoprogenitor cells and provide evidence that bone defects in the Job Syndrome are likely caused by Wnt/ß-catenin signaling reduction due to reduced STAT3 activities in bone development. Enhancing Wnt/ß-catenin signaling could be a therapeutic approach to reduce bone symptoms of Job syndrome patients.


Assuntos
Osso e Ossos/patologia , Síndrome de Job/metabolismo , Síndrome de Job/patologia , Células-Tronco Mesenquimais/metabolismo , Fator de Transcrição STAT3/deficiência , Via de Sinalização Wnt , Alelos , Animais , Cartilagem/patologia , Diferenciação Celular , Embrião de Mamíferos/patologia , Extremidades/patologia , Deleção de Genes , Humanos , Integrases/metabolismo , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Células-Tronco Mesenquimais/patologia , Mesoderma/embriologia , Camundongos Transgênicos , Osteoblastos/patologia , Osteogênese
18.
ChemMedChem ; 16(12): 1917-1926, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-33599108

RESUMO

The synthesis of 5-formyl-6-aryl-6H-indolo[3,2,1-de][1,5] naphthyridine-2-carboxylates by reaction between 1-formyl-9H-ß-carbolines and cinnamaldehydes in the presence of pyrrolidine in water with microwave irradiation is described. Pharmacophoric modification of the formyl group offered several new fused ß-carboline derivatives, which were investigated for their κ-opioid receptor (KOR) agonistic activity. Two compounds 4 a and 4 c produced appreciable agonist activity on KOR with EC50 values of 46±19 and 134±9 nM, respectively. Moreover, compound-induced KOR signaling studies suggested both compounds to be extremely G-protein-biased agonists. The analgesic effect of 4 a was validated by the increase in tail flick latency in mice in a time-dependent manner, which was completely blocked by the KOR-selective antagonist norBNI. Moreover, unlike U50488, an unbiased full KOR agonist, 4 a did not induce sedation. The docking of 4 a with the human KOR was studied to rationalize the result.


Assuntos
Analgésicos/farmacologia , Carbolinas/farmacologia , Antagonistas de Entorpecentes/farmacologia , Dor/tratamento farmacológico , Receptores Opioides kappa/agonistas , Analgésicos/síntese química , Analgésicos/química , Animais , Carbolinas/síntese química , Carbolinas/química , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Antagonistas de Entorpecentes/síntese química , Antagonistas de Entorpecentes/química
19.
Cryobiology ; 98: 139-145, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33301776

RESUMO

Buffalo is an important farm animal species in South and South-east Asian countries. Cryopreservation allows long-term storage of somatic cells, which can be made available to research communities. This study aimed to 1) establish and cryopreserve somatic cells from elite buffaloes, and 2) share stored somatic cells and their associated data with researchers. To achieve these targets, somatic cells were established successfully from tail-skin biopsies of 17 buffaloes. The informative data such as buffalo details (breed, date of birth, sex, and age at the time of tissue biopsy collection, and production traits), the number of cryovials stored, and freezing dates were recorded in an electronic file and a printed inventory record. The established somatic cells were flat, spindle-shaped morphology, and expressed vimentin (a fibroblast-like cell type marker) and the negative expression of cytokeratin-18 (an epithelial cell type marker). Altogether, we cryopreserved 970 cryovials (0.1 million cells per vial) from two buffalo breeds, namely Murrah and Nili-Ravi (at least 45 cryovials per animal), for cryobanking. Somatic cell nuclear transfer (SCNT) experiments demonstrated the utility of cryopreserved cells to produce cloned buffaloes. Importantly, these cryopreserved somatic cells are made available to scientific communities. This study encourages the cryopreservation of somatic cells of elite farm animals for their utilization in cell-based research.


Assuntos
Búfalos , Criopreservação , Animais , Animais Domésticos , Criopreservação/métodos , Técnicas de Transferência Nuclear , Projetos Piloto
20.
Mol Reprod Dev ; 87(12): 1231-1244, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33140487

RESUMO

This study was carried out to reveal factors and the mechanism of action by which low-density lipoproteins (LDLs) protect sperm better than egg yolk (EY) during cryopreservation. We extracted LDL from EY and compared the amount of calcium, progesterone, and antioxidants in EY and LDL. We found a very high concentration of progesterone (1423.95 vs. 10.46 ng/ml) and calcium (29.19 vs. 0.47 mM) in EY as compared with LDL. Antioxidant assays like DPPH (2,2-diphenyl-1-picrylhydrazyl) and the ferric reducing antioxidants power assay revealed that the LDL extender had almost double ability to lose hydrogen than the EY extender. For sperm cryopreservation, 20 ejaculates from four Murrah buffalo bulls were collected. Each ejaculate was divided into four aliquots and extended in 10%, 12%, and 14% LDL (w/v) and EY-based extenders, followed by cryopreservation. The LDL-based extender prevented excessive cholesterol efflux, and its high content of antioxidants minimized reactive oxygen species generated during cryopreservation, resulting in a functional CatSper channel. The EY-based extender promoted excess cholesterol efflux due to the presence of high-density lipoprotein, resulting in a compromised CatSper channel. High intracellular calcium in a cryopreserved sperm in the EY group as compared with the LDL group indicates that progesterone present in EY activates the CatSper channel, resulting in a heavy calcium influx into the sperm. The greater tyrosine phosphorylation and increased number of F-pattern in the sperm cryopreserved in the EY extender indicate that high intracellular calcium triggers more capacitation-like changes in the sperm cryopreserved in EY than LDL extender. In conclusion, we demonstrated the new facts and understandings about LDL and EY for semen cryopreservation.


Assuntos
Búfalos/fisiologia , Criopreservação/métodos , Crioprotetores/farmacologia , Lipoproteínas LDL/farmacologia , Preservação do Sêmen/métodos , Sêmen , Espermatozoides , Animais , Antioxidantes/análise , Cálcio/análise , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Colesterol/metabolismo , Crioprotetores/química , Gema de Ovo/química , Lipoproteínas LDL/química , Masculino , Progesterona/análise , Espécies Reativas de Oxigênio/metabolismo , Análise do Sêmen , Transdução de Sinais/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...