Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
J Infect Dis ; 225(5): 927-928, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34610130
2.
J Infect Dis ; 225(1): 146-156, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34161579

RESUMO

BACKGROUND: Plasmodium vivax controlled human malaria infection (PvCHMI) is an important tool for evaluation of drugs, vaccines, and pathologies associated with this parasite. However, there are few data on safety due to limited numbers of PvCHMIs performed. METHODS: We report clinical and laboratory data, including hematological and biochemical profiles and adverse events (AEs), following mosquito bite-induced PvCHMI in malaria-naive study participants. Malaria diagnosis and treatment initiation was based on microscopic analysis of Giemsa-stained slides. Exploratory molecular assays were used to detect parasites using real-time polymerase chain reaction (PCR). RESULTS: AEs were mild to moderate and no study-related severe AEs were observed in any study participants. The majority of symptoms were transient, resolving within 48 hours. Molecular diagnostic methods detected parasitemia in 100% of study participants before malaria diagnosis using microscopy. Of reported AEs, microscopy detected 67%-100%, quantitative PCR 79%-100%, and quantitative real-time reverse-transcription PCR 96%-100% of study participants prior to appearance of symptoms. Almost all symptoms appeared after initiation of treatment, likely as known consequence of drug treatment. CONCLUSIONS: PvCHMI is safe with the majority of infections being detected prior to appearance of clinical symptoms, which can be further alleviated by using sensitive molecular methods for clinical diagnosis. Clinical Trials Registration. NCT01157897.


Assuntos
DNA de Protozoário/isolamento & purificação , Mordeduras e Picadas de Insetos , Malária Vivax/diagnóstico , Malária/diagnóstico , Plasmodium vivax/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adulto , DNA de Protozoário/sangue , Feminino , Humanos , Malária/sangue , Masculino , Pessoa de Meia-Idade , Patologia Molecular , Plasmodium vivax/isolamento & purificação , Adulto Jovem
3.
Front Immunol ; 13: 1006954, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685545

RESUMO

Controlled Human Malaria Infection models (CHMI) have been critical to advancing new vaccines for malaria. Stringent and safe preparation of a challenge agent is key to the success of any CHMI. Difficulty producing the Plasmodium vivax parasite in vitro has limited production of qualified parasites for CHMI as well as the functional assays required to screen and down-select candidate vaccines for this globally distributed parasite. This and other challenges to P. vivax CHMI (PvCHMI), including scientific, logistical, and ethical obstacles, are common to P. vivax research conducted in both non-endemic and endemic countries, with additional hurdles unique to each. The challenges of using CHMI for P. vivax vaccine development and evaluation, lessons learned from previous and ongoing clinical trials, and the way forward to effectively perform PvCHMI to support vaccine development, are discussed.


Assuntos
Malária Vivax , Malária , Parasitos , Vacinas , Animais , Humanos , Plasmodium vivax , Desenvolvimento de Vacinas
4.
Infect Immun ; 87(3)2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30559218

RESUMO

Seroepidemiological studies on the prevalence of antibodies to malaria antigens are primarily conducted on individuals from regions of endemicity. It is therefore difficult to accurately correlate the antibody responses to the timing and number of prior malaria infections. This study was undertaken to assess the evolution of antibodies to the dominant surface antigens of Plasmodium vivax and P. falciparum following controlled human malaria infection (CHMI) in malaria-naive individuals. Serum samples from malaria-naive adults, collected before and after CHMI with either P. vivax (n = 18) or P. falciparum (n = 18), were tested for the presence of antibodies to the circumsporozoite protein (CSP) and the 42-kDa fragment of merozoite surface protein 1 (MSP-142) of P. vivax and P. falciparum using an enzyme-linked immunosorbent assay (ELISA). Approximately 1 month following CHMI with either P. vivax or P. falciparum, >60% of subjects seroconverted to homologous CSP and MSP-1. More than 50% of the subjects demonstrated reactivity to heterologous CSP and MSP-142, and a similar proportion of subjects remained seropositive to homologous MSP-142 >5 months after CHMI. Computational analysis provides insight into the presence of cross-reactive responses. The presence of long-lived and heterologous reactivity and its functional significance, if any, need to be taken into account while evaluating malaria exposure in field settings.


Assuntos
Antígenos de Protozoários/imunologia , Eritrócitos/parasitologia , Malária Falciparum/imunologia , Malária Vivax/imunologia , Plasmodium falciparum , Plasmodium vivax , Adolescente , Adulto , Animais , Anopheles/parasitologia , Epitopos de Linfócito B , Feminino , Humanos , Malária Falciparum/parasitologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Mosquitos Vetores/parasitologia , Proteínas de Protozoários/imunologia , Adulto Jovem
5.
Elife ; 62017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28949293

RESUMO

The study of antigenic targets of naturally-acquired immunity is essential to identify and prioritize antigens for further functional characterization. We measured total IgG antibodies to 38 P. vivax antigens, investigating their relationship with prospective risk of malaria in a cohort of 1-3 years old Papua New Guinean children. Using simulated annealing algorithms, the potential protective efficacy of antibodies to multiple antigen-combinations, and the antibody thresholds associated with protection were investigated for the first time. High antibody levels to multiple known and newly identified proteins were strongly associated with protection (IRR 0.44-0.74, p<0.001-0.041). Among five-antigen combinations with the strongest protective effect (>90%), EBP, DBPII, RBP1a, CyRPA, and PVX_081550 were most frequently identified; several of them requiring very low antibody levels to show a protective association. These data identify individual antigens that should be prioritized for further functional testing and establish a clear path to testing a multicomponent P. vivax vaccine.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Antígenos de Protozoários/genética , Pré-Escolar , Humanos , Imunoglobulina G/sangue , Lactente , Vacinas Antimaláricas/isolamento & purificação , Papua Nova Guiné , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética
6.
Malar J ; 16(1): 178, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28454546

RESUMO

BACKGROUND: Thailand is aiming to eliminate malaria by the year 2024. Plasmodium vivax has now become the dominant species causing malaria within the country, and a high proportion of infections are asymptomatic. A better understanding of antibody dynamics to P. vivax antigens in a low-transmission setting, where acquired immune responses are poorly characterized, will be pivotal for developing new strategies for elimination, such as improved surveillance methods and vaccines. The objective of this study was to characterize total IgG antibody levels to 11 key P. vivax proteins in a village of western Thailand. METHODS: Plasma samples from 546 volunteers enrolled in a cross-sectional survey conducted in 2012 in Kanchanaburi Province were utilized. Total IgG levels to 11 different proteins known or predicted to be involved in reticulocyte binding or invasion (ARP, GAMA, P41, P12, PVX_081550, and five members of the PvRBP family), as well as the leading pre-erythrocytic vaccine candidate (CSP) were measured using a multiplexed bead-based assay. Associations between IgG levels and infection status, age, and spatial location were explored. RESULTS: Individuals from a low-transmission region of western Thailand reacted to all 11 P. vivax recombinant proteins. Significantly greater IgG levels were observed in the presence of a current P. vivax infection, despite all infected individuals being asymptomatic. IgG levels were also higher in adults (18 years and older) than in children. For most of the proteins, higher IgG levels were observed in individuals living closer to the Myanmar border and further away from local health services. CONCLUSIONS: Robust IgG responses were observed to most proteins and IgG levels correlated with surrogates of exposure, suggesting these antigens may serve as potential biomarkers of exposure, immunity, or both.


Assuntos
Malária Vivax/imunologia , Plasmodium vivax/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Assintomáticas/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Imunoglobulina G , Lactente , Recém-Nascido , Malária Vivax/sangue , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Tailândia/epidemiologia , Adulto Jovem
8.
PLoS Negl Trop Dis ; 10(2): e0004423, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26919472

RESUMO

BACKGROUND: A vaccine to prevent infection and disease caused by Plasmodium vivax is needed both to reduce the morbidity caused by this parasite and as a key component in efforts to eradicate malaria worldwide. Vivax malaria protein 1 (VMP001), a novel chimeric protein that incorporates the amino- and carboxy- terminal regions of the circumsporozoite protein (CSP) and a truncated repeat region that contains repeat sequences from both the VK210 (type 1) and the VK247 (type 2) parasites, was developed as a vaccine candidate for global use. METHODS: We conducted a first-in-human Phase 1 dose escalation vaccine study with controlled human malaria infection (CHMI) of VMP001 formulated in the GSK Adjuvant System AS01B. A total of 30 volunteers divided into 3 groups (10 per group) were given 3 intramuscular injections of 15 µg, 30 µg, or 60 µg respectively of VMP001, all formulated in 500 µL of AS01B at each immunization. All vaccinated volunteers participated in a P. vivax CHMI 14 days following the third immunization. Six non-vaccinated subjects served as infectivity controls. RESULTS: The vaccine was shown to be well tolerated and immunogenic. All volunteers generated robust humoral and cellular immune responses to the vaccine antigen. Vaccination did not induce sterile protection; however, a small but significant delay in time to parasitemia was seen in 59% of vaccinated subjects compared to the control group. An association was identified between levels of anti-type 1 repeat antibodies and prepatent period. SIGNIFICANCE: This trial was the first to assess the efficacy of a P. vivax CSP vaccine candidate by CHMI. The association of type 1 repeat-specific antibody responses with delay in the prepatency period suggests that augmenting the immune responses to this domain may improve strain-specific vaccine efficacy. The availability of a P. vivax CHMI model will accelerate the process of P. vivax vaccine development, allowing better selection of candidate vaccines for advancement to field trials.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Anticorpos Antiprotozoários/imunologia , Feminino , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/efeitos adversos , Malária Vivax/imunologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Proteínas de Protozoários/administração & dosagem , Proteínas de Protozoários/efeitos adversos , Vacinação , Adulto Jovem
9.
Vaccine ; 33(52): 7518-24, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26458803

RESUMO

Recombinant subunit vaccines in general are poor immunogens likely due to the small size of peptides and proteins, combined with the lack or reduced presentation of repetitive motifs and missing complementary signal(s) for optimal triggering of the immune response. Therefore, recombinant subunit vaccines require enhancement by vaccine delivery vehicles in order to attain adequate protective immunity. Particle-based delivery platforms, including particulate antigens and particulate adjuvants, are promising delivery vehicles for modifying the way in which immunogens are presented to both the innate and adaptive immune systems. These particle delivery platforms can also co-deliver non-specific immunostimodulators as additional adjuvants. This paper reviews efforts and advances of the Particle-based delivery platforms in development of vaccines against malaria, a disease that claims over 600,000 lives per year, most of them are children under 5 years of age in sub-Sahara Africa.


Assuntos
Vacinas Antimaláricas/imunologia , Nanopartículas , Vacinas de Partículas Semelhantes a Vírus/imunologia , Adjuvantes Imunológicos , Antígenos de Protozoários/imunologia , Humanos , Vacinas Antimaláricas/administração & dosagem , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem
10.
PLoS Negl Trop Dis ; 8(10): e3268, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25329054

RESUMO

We have previously reported that Vivax Malaria Protein 001 (VMP001), a vaccine candidate based on the circumsporozoite protein of Plasmodium vivax, is immunogenic in mice and rhesus monkeys in the presence of various adjuvants. In the present study, we evaluated the immunogenicity and efficacy of VMP001 formulated with a TLR9 agonist in a water-in-oil emulsion. Following immunization, the vaccine efficacy was assessed by challenging Aotus nancymaae monkeys with P. vivax sporozoites. Monkeys from both the low- and high-dose vaccine groups generated strong humoral immune responses to the vaccine (peak median titers of 291,622), and its subunits (peak median titers to the N-term, central repeat and C-term regions of 22,188; 66,120 and 179,947, respectively). 66.7% of vaccinated monkeys demonstrated sterile protection following challenge. Protection was associated with antibodies directed against the central repeat region. The protected monkeys had a median anti-repeat titer of 97,841 compared to 14,822 in the non-protected monkeys. This is the first report demonstrating P. vivax CSP vaccine-induced protection of Aotus monkeys challenged with P. vivax sporozoites.


Assuntos
Aotidae/imunologia , Vacinas Antimaláricas/imunologia , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Adjuvantes Imunológicos , Animais , Anticorpos Antiprotozoários/sangue , Anticorpos Antiprotozoários/imunologia , Aotidae/parasitologia , Feminino , Imunidade Humoral/imunologia , Malária Vivax/parasitologia , Malária Vivax/prevenção & controle , Masculino , Camundongos , Doenças dos Macacos/parasitologia , Doenças dos Macacos/prevenção & controle , Distribuição Aleatória , Receptor Toll-Like 9/imunologia , Vacinação , Vacinas Sintéticas/imunologia
11.
Vaccine ; 31(52): 6216-24, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24144477

RESUMO

We have designed a pre-erythrocytic vaccine candidate based on the Plasmodium vivax circumsporozoite (CSV) protein, which includes its N- and C-terminal parts and a truncated region containing repeat sequences from both the VK210 and the VK247 P. vivax subtypes. Two versions of this vaccine candidate were made: a soluble recombinant protein expressed in Escherichia coli, designated VMP001 and a particulate antigen expressed in Saccharomyces cerevisiae, designated CSV-S,S. The latter is composed of CSV-S, a fusion protein between VMP001 and hepatitis B surface antigen (HBsAg), and free HBsAg co-expressed in yeast and self-assembling into mixed particles. Both antigen versions, adjuvanted with AS01, were shown to be immunogenic in rhesus monkeys. CSV-S,S/AS01 induced higher levels of VMP001-specific antibodies than did VMP001/AS01. Antibody responses against the N- and C-terminal regions of CSV and the VK210 repeat motif were of a similar magnitude following immunization with either the soluble or the particulate antigen. However, antibodies against the AGDR region, a potentially protective B cell epitope, were only detected after immunization with CSV-S,S. Analysis of the induced CD4(+) T cells highlighted different cytokine profiles depending on the antigen form. These results warrant further clinical evaluation of these two vaccine candidates to assess the added value of a particulate versus soluble form of CSV, in terms of both immunogenicity and protective efficacy.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Antimaláricas/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Linfócitos T CD4-Positivos/imunologia , Citocinas/metabolismo , Escherichia coli/genética , Expressão Gênica , Macaca mulatta , Vacinas Antimaláricas/administração & dosagem , Vacinas Antimaláricas/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Saccharomyces cerevisiae/genética , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/genética , Vacinas de Subunidades Antigênicas/imunologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Vacinas de Partículas Semelhantes a Vírus/imunologia
13.
Infect Immun ; 81(8): 2882-7, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23716612

RESUMO

The development of vaccine candidates against Plasmodium vivax-the most geographically widespread human malaria species-is challenged by technical difficulties, such as the lack of in vitro culture systems and availability of animal models. Chimeric rodent Plasmodium parasites are safe and useful tools for the preclinical evaluation of new vaccine formulations. We report the successful development and characterization of chimeric Plasmodium berghei parasites bearing the type I repeat region of P. vivax circumsporozoite protein (CSP). The P. berghei-P. vivax chimeric strain develops normally in mosquitoes and produces highly infectious sporozoites that produce patent infection in mice that are exposed to the bites of as few as 3 P. berghei-P. vivax-infected mosquitoes. Using this transgenic parasite, we demonstrate that monoclonal and polyclonal antibodies against P. vivax CSP strongly inhibit parasite infection and thus support the notion that these antibodies play an important role in protective immunity. The chimeric parasites we developed represent a robust model for evaluating protective immune responses against P. vivax vaccines based on CSP.


Assuntos
Quimera/genética , Vacinas Antimaláricas/imunologia , Plasmodium berghei/genética , Plasmodium vivax/genética , Proteínas de Protozoários/genética , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Quimera/imunologia , Técnica Indireta de Fluorescência para Anticorpo , Camundongos , Plasmodium berghei/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
14.
Vaccine ; 30(22): 3311-9, 2012 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-22425788

RESUMO

Plasmodium vivax is the major cause of malaria outside of sub-Saharan Africa and causes morbidity and results in significant economic impact in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study, groups of C57BL/6J mice were immunized subcutaneously three times with VMP001 emulsified with synthetic TLR4 (GLA) or TLR7/8 (R848) agonist in stable emulsion (SE), a combination of the TLR4 and TLR7/8 agonists, or SE alone. Sera and splenocytes were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of mice generated high titers of anti-P. vivax IgG antibodies as detected by ELISA and immunofluorescence assay. GLA-SE promoted a shift in the antibody response to a Th1 profile, as demonstrated by the change in IgG2c/IgG1 ratio. In addition, GLA-SE induced a strong cellular immune response characterized by multi-functional, antigen-specific CD4(+) T cells secreting IL-2, TNF and IFN-γ. In contrast, mice immunized with SE or R848-SE produced low numbers of antigen-specific CD4(+) T cells, and these T cells secreted IL-2 and TNF, but not IFN-γ. Finally, R848-SE did not enhance the immune response compared to GLA-SE alone. Based on these results, we conclude that the combination of VMP001 and GLA-SE is highly immunogenic in mice and may serve as a potential second-generation vaccine candidate against vivax malaria.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Vacinas Antimaláricas/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/sangue , Linfócitos T CD4-Positivos/imunologia , Emulsões/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Imunoglobulina G/sangue , Injeções Subcutâneas , Interferon gama/metabolismo , Interleucina-2/metabolismo , Vacinas Antimaláricas/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Fator de Necrose Tumoral alfa/metabolismo , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
15.
J Infect Dis ; 205(9): 1456-63, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22457289

RESUMO

Malaria continues to be a major public health concern, and there are concerted efforts to eliminate it. The quest for a vaccine remains a top priority, and vaccines based on the circumsporozoite protein (CSP) are among the lead candidates, with the RTS,S vaccine currently undergoing phase 3 testing in Africa. Previous studies have reported anti-CSP antibody-mediated enhancement of in vitro invasion of homologous sporozoites. This effect has been shown to be concentration dependent; high-level antibodies are inhibitory, whereas low-level antibodies lead to enhancement of invasion. Nondominant shared epitopes may lead to the generation of low titers of cross-reactive antibodies that may prove to be detrimental. We report cross-species recognition of Plasmodium falciparum and Plasmodium berghei sporozoites by anti-Plasmodium vivax CSP serum samples. In addition, we report that vaccination of mice with VMP001, a P. vivax CSP vaccine candidate, reduces, not enhances, P. berghei infection in mice.


Assuntos
Proteção Cruzada , Vacinas Antimaláricas/imunologia , Malária/imunologia , Malária/prevenção & controle , Proteínas de Protozoários/imunologia , África , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/sangue , Epitopos/imunologia , Feminino , Imunização , Vacinas Antimaláricas/genética , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Plasmodium vivax/imunologia , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA , Especificidade da Espécie , Esporozoítos/imunologia
16.
PLoS One ; 7(2): e31472, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22328935

RESUMO

The parasite Plasmodium vivax is the most frequent cause of malaria outside of sub-Saharan Africa, but efforts to develop viable vaccines against P. vivax so far have been inadequate. We recently developed pathogen-mimicking polymeric vaccine nanoparticles composed of the FDA-approved biodegradable polymer poly(lactide-co-glycolide) acid (PLGA) "enveloped" by a lipid membrane. In this study, we sought to determine whether this vaccine delivery platform could be applied to enhance the immune response against P. vivax sporozoites. A candidate malaria antigen, VMP001, was conjugated to the lipid membrane of the particles, and an immunostimulatory molecule, monophosphoryl lipid A (MPLA), was incorporated into the lipid membranes, creating pathogen-mimicking nanoparticle vaccines (VMP001-NPs). Vaccination with VMP001-NPs promoted germinal center formation and elicited durable antigen-specific antibodies with significantly higher titers and more balanced Th1/Th2 responses in vivo, compared with vaccines composed of soluble protein mixed with MPLA. Antibodies raised by NP vaccinations also exhibited enhanced avidity and affinity toward the domains within the circumsporozoite protein implicated in protection and were able to agglutinate live P. vivax sporozoites. These results demonstrate that these VMP001-NPs are promising vaccines candidates that may elicit protective immunity against P. vivax sporozoites.


Assuntos
Ácido Láctico/química , Vacinas Antimaláricas/administração & dosagem , Malária Vivax/prevenção & controle , Nanopartículas/química , Plasmodium vivax/imunologia , Ácido Poliglicólico/química , Animais , Vacinas Antimaláricas/química , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Esporozoítos/imunologia
17.
Proc Natl Acad Sci U S A ; 109(4): 1080-5, 2012 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-22247289

RESUMO

For subunit vaccines, adjuvants play a key role in shaping immunological memory. Nanoparticle (NP) delivery systems for antigens and/or molecular danger signals are promising adjuvants capable of promoting both cellular and humoral immune responses, but in most cases the mechanisms of action of these materials are poorly understood. Here, we studied the immune response elicited by NPs composed of multilamellar "stapled" lipid vesicles carrying a recombinant Plasmodium vivax circumsporozoite antigen, VMP001, both entrapped in the aqueous core and anchored to the lipid bilayer surfaces. Immunization with these particles and monophosphoryl lipid A (MPLA), a US Food and Drug Administration-approved immunostimulatory agonist for Toll-like receptor-4, promoted high-titer, high-avidity antibody responses against VMP001, lasting more than 1 y in mice at 10-fold lower doses than conventional adjuvants. Compared to soluble VMP001 mixed with MPLA, VMP001-NPs promoted broader humoral responses, targeting multiple epitopes of the protein and a more balanced Th1/Th2 cytokine profile from antigen-specific T cells. To begin to understand the underlying mechanisms, we examined components of the B-cell response and found that NPs promoted robust germinal center (GC) formation at low doses of antigen where no GC induction occurred with soluble protein immunization, and that GCs nucleated near depots of NPs accumulating in the draining lymph nodes over time. In parallel, NP vaccination enhanced the expansion of antigen-specific follicular helper T cells (T(fh)), compared to vaccinations with soluble VMP001 or alum. Thus, NP vaccines may be a promising strategy to enhance the durability, breadth, and potency of humoral immunity by enhancing key elements of the B-cell response.


Assuntos
Antígenos de Protozoários/imunologia , Linfócitos B/imunologia , Vacinas Antimaláricas/imunologia , Nanopartículas/administração & dosagem , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Linfócitos T Auxiliares-Indutores/imunologia , Análise de Variância , Antígenos de Protozoários/administração & dosagem , Reações Cruzadas , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Centro Germinativo/imunologia , Imuno-Histoquímica , Lipídeo A/análogos & derivados , Lipídeo A/imunologia , Bicamadas Lipídicas/administração & dosagem , Bicamadas Lipídicas/imunologia , Microscopia Confocal , Tamanho da Partícula , Proteínas Recombinantes/administração & dosagem , Espectrometria de Fluorescência , Vesículas Transportadoras/metabolismo
18.
Infect Immun ; 79(9): 3492-500, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21690242

RESUMO

Plasmodium vivax is the major cause of malaria outside sub-Saharan Africa and inflicts debilitating morbidity and consequent economic impacts in developing countries. In order to produce a P. vivax vaccine for global use, we have previously reported the development of a novel chimeric recombinant protein, VMP001, based on the circumsporozoite protein (CSP) of P. vivax. Very few adjuvant formulations are currently available for human use. Our interest is to evaluate second-generation vaccine formulations to identify novel combinations of adjuvants capable of inducing strong, long-lasting immune responses. In this study rhesus monkeys were immunized intramuscularly three times with VMP001 in combination with a stable emulsion (SE) or a synthetic Toll-like receptor 4 (TLR4) agonist (glucopyranosyl lipid A [GLA]) in SE (GLA-SE). Sera and peripheral blood mononuclear cells (PBMCs) were tested for the presence of antigen-specific humoral and cellular responses, respectively. All groups of monkeys generated high titers of anti-P. vivax IgG antibodies, as detected by enzyme-linked immunosorbent assays (ELISAs) and immunofluorescence assays. In addition, all groups generated a cellular immune response characterized by antigen-specific CD4(+) T cells secreting predominantly interleukin-2 (IL-2) and lesser amounts of tumor necrosis factor (TNF). We conclude that the combination of VMP001 and GLA-SE is safe and immunogenic in monkeys and may serve as a potential second-generation vaccine candidate against P. vivax malaria.


Assuntos
Vacinas Antimaláricas/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Receptor 4 Toll-Like/agonistas , Adjuvantes Imunológicos , Animais , Antígenos de Protozoários/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos , Emulsões , Ensaio de Imunoadsorção Enzimática , Imunofluorescência , Imunoglobulina G/sangue , Interferon gama/biossíntese , Interleucina-2/biossíntese , Interleucina-2/metabolismo , Lipídeo A/imunologia , Macaca mulatta , Malária Vivax/imunologia , Proteínas de Protozoários/imunologia , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/biossíntese , Vacinas Sintéticas/imunologia
19.
J Infect Dis ; 200(9): 1465-9, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19803728

RESUMO

Plasmodium vivax is not thought to be transmitted in western and central Africa, because of the very high prevalence of the red blood cell Duffy-negative phenotype in local populations, a condition which is thought to confer complete resistance against blood infection with P. vivax. There are, however, persistent reports of travelers returning from this region with P. vivax infections. To investigate whether transmission occurs in this region, the presence of antibodies specific to P. vivax preerythrocytic-stage antigens was assessed in individuals from the Republic of the Congo. A total of 55 (13%) of 409 samples tested by enzyme-linked immunosorbent assay had antibodies to P. vivax-specific antigens.


Assuntos
Anticorpos Antiprotozoários/sangue , Doenças Endêmicas , Malária Vivax/transmissão , Vigilância da População , Estudos de Casos e Controles , Congo/epidemiologia , Feminino , Humanos , Malária Vivax/epidemiologia , Malária Vivax/imunologia , Masculino , Proteína 1 de Superfície de Merozoito/imunologia , Prevalência , Proteínas de Protozoários/imunologia , Testes Sorológicos
20.
Vaccine ; 27(9): 1448-53, 2009 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-19138714

RESUMO

The global eradication of malaria will require the development of vaccines to prevent infection cause by Plasmodium vivax in addition to Plasmodium falciparum. In an attempt to contribute to this effort we have previously reported the cloning and expression of a vaccine based on the circumsporozoite protein of P. vivax. The synthetic vaccine encodes for a full-length molecule encompassing the N-terminal and C-terminal regions flanking a chimeric repeat region representing VK210 and VK247, the two major alleles of P. vivax CSP. The vaccine, designated vivax malaria protein 001 (VMP001), was purified to >95% homogeneity using a three-column purification scheme and had low endotoxin levels and passed the rabbit pyrogenicity assay. The protein is recognized by monoclonal antibodies directed against the two repeat motifs, as well as polyclonal antibodies. Immunization with VMP001 induced high titer antibodies in mice using Montanide ISA 720. We currently have more than 10,000 doses of purified bulk and 1800 vials of formulated bulk vaccine available for clinical testing and VMP001 is currently undergoing further development as a candidate vaccine to prevent malaria in humans.


Assuntos
Escherichia coli/imunologia , Vacinas Antimaláricas/uso terapêutico , Malária Vivax/imunologia , Plasmodium vivax/imunologia , Vacinas Sintéticas/imunologia , Animais , Clonagem Molecular , Humanos , Imunização/métodos , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Coelhos/imunologia , Proteínas Recombinantes de Fusão/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...