Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 18(3): 236-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26911906

RESUMO

Yaffe and colleagues discuss the issues surrounding the authentication and quality of induced pluripotent stem cells.


Assuntos
Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes/citologia , Transplante de Células-Tronco , Animais , Linhagem Celular , Humanos
3.
Am J Pathol ; 175(5): 1810-6, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19834068

RESUMO

Presenilin-1 (PS1) and -2 (PS2), which when mutated cause familial Alzheimer disease, have been localized to numerous compartments of the cell, including the endoplasmic reticulum, Golgi, nuclear envelope, endosomes, lysosomes, the plasma membrane, and mitochondria. Using three complementary approaches, subcellular fractionation, gamma-secretase activity assays, and immunocytochemistry, we show that presenilins are highly enriched in a subcompartment of the endoplasmic reticulum that is associated with mitochondria and that forms a physical bridge between the two organelles, called endoplasmic reticulum-mitochondria-associated membranes. A localization of PS1 and PS2 in mitochondria-associated membranes may help reconcile the disparate hypotheses regarding the pathogenesis of Alzheimer disease and may explain many seemingly unrelated features of this devastating neurodegenerative disorder.


Assuntos
Retículo Endoplasmático/metabolismo , Membranas Intracelulares/metabolismo , Mitocôndrias/metabolismo , Presenilina-1/metabolismo , Presenilina-2/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Células Cultivadas , Coenzima A Ligases/metabolismo , Retículo Endoplasmático/ultraestrutura , Humanos , Membranas Intracelulares/ultraestrutura , Camundongos , Mitocôndrias/ultraestrutura , Presenilina-1/genética , Presenilina-2/genética , Ratos , Frações Subcelulares/metabolismo
4.
J Cell Biol ; 182(1): 41-9, 2008 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-18606849

RESUMO

Movement of mitochondria in Schizosaccharomyces pombe depends on their association with the dynamic, or plus ends, of microtubules, yet the molecular basis for this interaction is poorly understood. We identified mmd4 in a screen of temperature-sensitive S. pombe strains for aberrant mitochondrial morphology and distribution. Cells with the mmd4 mutation display mitochondrial aggregation near the cell ends at elevated temperatures, a phenotype similar to mitochondrial defects observed in wild-type cells after microtubule depolymerization. However, microtubule morphology and function appear normal in the mmd4 mutant. The mmd4 lesion maps to peg1(+), which encodes a microtubule-associated protein with homology to cytoplasmic linker protein-associated proteins (mammalian microtubule plus end-binding proteins). Peg1p localizes to the plus end of microtubules and to mitochondria and is recovered with mitochondria during subcellular fractionation. This mitochondrial-associated fraction of Peg1p displays properties of a peripherally associated protein. Peg1p is the first identified microtubule plus end-binding protein required for mitochondrial distribution and likely functions as a molecular link between mitochondria and microtubules.


Assuntos
Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Alelos , Polaridade Celular , Genes Fúngicos , Interfase , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mutação/genética , Forma das Organelas , Fenótipo , Transporte Proteico , Schizosaccharomyces/citologia , Schizosaccharomyces/genética
5.
J Biomed Opt ; 12(5): 054003, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17994891

RESUMO

We report an analysis of four strains of baker's yeast (Saccharomyces cerevisiae) using biocavity laser spectroscopy. The four strains are grouped in two pairs (wild type and altered), in which one strain differs genetically at a single locus, affecting mitochondrial function. In one pair, the wild-type rho+ and a rho0 strain differ by complete removal of mitochondrial DNA (mtDNA). In the second pair, the wild-type rho+ and a rho- strain differ by knock-out of the nuclear gene encoding Cox4, an essential subunit of cytochrome c oxidase. The biocavity laser is used to measure the biophysical optic parameter Deltalambda, a laser wavelength shift relating to the optical density of cell or mitochondria that uniquely reflects its size and biomolecular composition. As such, Deltalambda is a powerful parameter that rapidly interrogates the biomolecular state of single cells and mitochondria. Wild-type cells and mitochondria produce Gaussian-like distributions with a single peak. In contrast, mutant cells and mitochondria produce leptokurtotic distributions that are asymmetric and highly skewed to the right. These distribution changes could be self-consistently modeled with a single, log-normal distribution undergoing a thousand-fold increase in variance of biomolecular composition. These features reflect a new state of stressed or diseased cells that we call a reactive biomolecular divergence (RBD) that reflects the vital interdependence of mitochondria and the nucleus.


Assuntos
Separação Celular/métodos , Citometria de Fluxo/métodos , Microscopia Confocal/métodos , Mitocôndrias/ultraestrutura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestrutura , Análise Espectral/métodos , Mutação
6.
J Cell Biol ; 173(5): 651-8, 2006 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-16754953

RESUMO

Mgm1p is a conserved dynamin-related GTPase required for fusion, morphology, inheritance, and the genome maintenance of mitochondria in Saccharomyces cerevisiae. Mgm1p undergoes unconventional processing to produce two functional isoforms by alternative topogenesis. Alternative topogenesis involves bifurcate sorting in the inner membrane and intramembrane proteolysis by the rhomboid protease Pcp1p. Here, we identify Ups1p, a novel mitochondrial protein required for the unique processing of Mgm1p and for normal mitochondrial shape. Our results demonstrate that Ups1p regulates the sorting of Mgm1p in the inner membrane. Consistent with its function, Ups1p is peripherally associated with the inner membrane in the intermembrane space. Moreover, the human homologue of Ups1p, PRELI, can fully replace Ups1p in yeast cells. Together, our findings provide a conserved mechanism for the alternative topogenesis of Mgm1p and control of mitochondrial morphology.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Humanos , Membranas Mitocondriais/metabolismo , Proteínas/metabolismo , Saccharomyces cerevisiae/metabolismo
7.
Dev Cell ; 7(1): 61-71, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15239954

RESUMO

The biogenesis of mitochondrial outer membrane proteins involves the general translocase of the outer membrane (TOM complex) and the sorting and assembly machinery (SAM complex). The two known subunits of the SAM complex, Mas37 and Sam50, are required for assembly of the abundant outer membrane proteins porin and Tom40. We have identified an unexpected subunit of the SAM complex, Mdm10, which is involved in maintenance of mitochondrial morphology. Mitochondria lacking Mdm10 are selectively impaired in the final steps of the assembly pathway of Tom40, including the association of Tom40 with the receptor Tom22 and small Tom proteins, while the biogenesis of porin is not affected. Yeast mutants of TOM40, MAS37, and SAM50 also show aberrant mitochondrial morphology. We conclude that Mdm10 plays a specific role in the biogenesis of the TOM complex, indicating a connection between the mitochondrial protein assembly apparatus and the machinery for maintenance of mitochondrial morphology.


Assuntos
Membranas Intracelulares/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Células Cultivadas , Membranas Intracelulares/enzimologia , Membranas Intracelulares/ultraestrutura , Substâncias Macromoleculares , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/patologia , Mitocôndrias/ultraestrutura , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Mutação/genética , Transporte Proteico/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/ultraestrutura , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética
8.
Mol Biol Cell ; 15(4): 1656-65, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-14767070

RESUMO

The mmd1 mutation causes temperature-sensitive growth and defects in mitochondrial morphology and distribution in the fission yeast Schizosaccharomyces pombe. In mutant cells, mitochondria aggregate at the two cell ends, with increased aggregation at elevated temperatures. Microtubules, which mediate mitochondrial positioning in fission yeast, seem normal in mmd1 cells at permissive temperature and after several hours at the nonpermissive temperature but display aberrant organization after prolonged periods at 37 degrees C. Additionally, cells harboring both mmd1 and ban5-4, a temperature-sensitive allele of alpha2-tubulin, display synthetic defects in growth and mitochondrial distribution. The mmd1 mutation maps to an open reading frame encoding a novel 35.7-kDa protein. The Mmd1p sequence features repeating EZ-HEAT motifs and displays high conservation with uncharacterized homologues found in a variety of organisms. Saccharomyces cerevisiae cells depleted for their MMD1 homologue show increased sensitivity to the antimicrotubule drug benomyl, and the S. cerevisiae gene complemented the S. pombe mutation. Mmd1p was localized to the cytosol. Mmd1p is the first identified component required for the alignment of mitochondria along microtubules in fission yeast.


Assuntos
Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/fisiologia , Mitocôndrias/patologia , Proteínas de Schizosaccharomyces pombe/biossíntese , Proteínas de Schizosaccharomyces pombe/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Clonagem Molecular , Citosol/metabolismo , Técnicas Genéticas , Genótipo , Microscopia , Microscopia de Fluorescência , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Consumo de Oxigênio , Schizosaccharomyces , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Temperatura
9.
Proc Natl Acad Sci U S A ; 100(20): 11424-8, 2003 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-12972644

RESUMO

Microtubules mediate mitochondrial distribution in the yeast Schizosaccharomyces pombe and many higher eukaryotic cells. In higher eukaryotes, kinesin motor proteins have been shown to transport mitochondria along microtubules, but the nature of the mitochondria-microtubule interactions in S. pombe has not been explored. By time lapse, total internal reflection fluorescence microscopy, or spinning-disk confocal microscopy, mitochondria appeared to be both tethered to ends and bound laterally along the sides of microtubules. Mitochondrial tubules extended and retracted when attached to the tips of elongating or shortening microtubules, respectively, but translocation along established microtubules was never observed. Mitochondria that were not associated with microtubules were largely immobile until they were "captured" by a growing microtubule. In mitotic cells, a portion of the mitochondria was tethered to the spindle-pole bodies and moved to the cellular ends during spindle elongation. This association may be important for organelle inheritance during cell division. Thus, in contrast to kinesin-mediated transport used by higher eukaryotes, mitochondrial motility and distribution in fission yeast are driven largely by microtubule polymerization and the elongation of the mitotic spindle.


Assuntos
Schizosaccharomyces/ultraestrutura , Fuso Acromático/fisiologia , Sequência de Bases , Primers do DNA , Transferência de Energia , Fluorescência
10.
Mol Biol Cell ; 14(6): 2342-56, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12808034

RESUMO

In Saccharomyces cerevisiae, mitochondrial fusion requires at least two outer membrane proteins, Fzo1p and Ugo1p. We provide direct evidence that the dynamin-related Mgm1 protein is also required for mitochondrial fusion. Like fzo1 and ugo1 mutants, cells disrupted for the MGM1 gene contain numerous mitochondrial fragments instead of the few long, tubular organelles seen in wild-type cells. Fragmentation of mitochondria in mgm1 mutants is rescued by disrupting DNM1, a gene required for mitochondrial division. In zygotes formed by mating mgm1 mutants, mitochondria do not fuse and mix their contents. Introducing mutations in the GTPase domain of Mgm1p completely block mitochondrial fusion. Furthermore, we show that mgm1 mutants fail to fuse both their mitochondrial outer and inner membranes. Electron microscopy demonstrates that although mgm1 mutants display aberrant mitochondrial inner membrane cristae, mgm1 dnm1 double mutants restore normal inner membrane structures. However, mgm1 dnm1 mutants remain defective in mitochondrial fusion, indicating that mitochondrial fusion requires Mgm1p regardless of the morphology of mitochondria. Finally, we find that Mgm1p, Fzo1p, and Ugo1p physically interact in the mitochondrial outer membrane. Our results raise the possibility that Mgm1p regulates fusion of the mitochondrial outer membrane through its interactions with Fzo1p and Ugo1p.


Assuntos
Proteínas de Ligação ao GTP/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA Mitocondrial/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/genética , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA