Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 69: 103027, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38184999

RESUMO

Non-alcoholic steatohepatitis (NASH) is a common chronic liver disease that compromises liver function, for which there is not a specifically approved medicine. Recent research has identified transcription factor NRF2 as a potential therapeutic target. However, current NRF2 activators, designed to inhibit its repressor KEAP1, exhibit unwanted side effects. Alternatively, we previously introduced PHAR, a protein-protein interaction inhibitor of NRF2/ß-TrCP, which induces a mild NRF2 activation and selectively activates NRF2 in the liver, close to normal physiological levels. Herein, we assessed the effect of PHAR in protection against NASH and its progression to fibrosis. We conducted experiments to demonstrate that PHAR effectively activated NRF2 in hepatocytes, Kupffer cells, and stellate cells. Then, we used the STAM mouse model of NASH, based on partial damage of endocrine pancreas and insulin secretion impairment, followed by a high fat diet. Non-invasive analysis using MRI revealed that PHAR protects against liver fat accumulation. Moreover, PHAR attenuated key markers of NASH progression, including liver steatosis, hepatocellular ballooning, inflammation, and fibrosis. Notably, transcriptomic data indicate that PHAR led to upregulation of 3 anti-fibrotic genes (Plg, Serpina1a, and Bmp7) and downregulation of 6 pro-fibrotic (including Acta2 and Col3a1), 11 extracellular matrix remodeling, and 8 inflammatory genes. Overall, our study suggests that the mild activation of NRF2 via the protein-protein interaction inhibitor PHAR holds promise as a strategy for addressing NASH and its progression to liver fibrosis.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Proteínas Contendo Repetições de beta-Transducina , Fibrose , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico
2.
Int J Mol Sci ; 24(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37569656

RESUMO

NURR1 (Nuclear receptor-related 1 protein or NR4A2) is a nuclear protein receptor transcription factor with an essential role in the development, regulation, and maintenance of dopaminergic neurons and mediates the response to stressful stimuli during the perinatal period in mammalian brain development. The dysregulation of NURR1 activity may play a role in various diseases, including the onset and progression of neurodegenerative diseases, and several other pathologies. NURR1 is regulated by multiple mechanisms, among which phosphorylation by kinases or SUMOylation are the best characterized. Both post-translational modifications can regulate the activity of NURR1, affecting its stability and transcriptional activity. Other non-post-translational regulatory mechanisms include changes in its subcellular distribution or interaction with other protein partners by heterodimerization, also affecting its transcription activity. Here, we summarize the currently known regulatory mechanisms of NURR1 and provide a brief overview of its participation in pathological alterations.


Assuntos
Proteínas de Ligação a DNA , Fatores de Transcrição , Animais , Feminino , Gravidez , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Mamíferos/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Humanos
3.
Comput Part Mech ; 9(4): 655-671, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35765688

RESUMO

In this paper, an efficient and robust methodology to simulate saturated soils subjected to low-medium frequency dynamic loadings under large deformation regime is presented. The coupling between solid and fluid phases is solved through the dynamic reduced formulation u - p w (solid displacement - pore water pressure) of the Biot's equations. The additional novelty lies in the employment of an explicit two-steps Newmark predictor-corrector time integration scheme that enables accurate solutions of related geomechanical problems at large strain without the usually high computational cost associated with the implicit counterparts. Shape functions based on the elegant Local Maximum Entropy approach, through the Optimal Transportation Meshfree framework, are considered to solve numerically different dynamic problems in fluid saturated porous media.

4.
Mol Neurobiol ; 58(12): 6697-6711, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34609698

RESUMO

In Parkinson's disease, the dysfunction of the dopaminergic nigrostriatal tract involves the loss of function of dopaminergic neurons of the substantia nigra pars compacta followed by death of these neurons. The functional recovery of these neurons requires a deep knowledge of the molecules that maintain the dopaminergic phenotype during adulthood and the mechanisms that subvert their activity. Previous studies have shown that transcription factor NURR1, involved in differentiation and maintenance of the dopaminergic phenotype, is downregulated by α-synuclein (α-SYN). In this study, we provide a mechanistic explanation to this finding by connecting α-SYN-induced activation of glycogen synthase kinase-3 (GSK-3) with NURR1 phosphorylation followed by proteasomal degradation. The use of sequential deletion mutants and single point mutants of NURR1 allowed the identification of a domain comprising amino acids 123-PSSPPTPSTPS-134 that is targeted by GSK-3 and leads to subsequent ubiquitination and proteasome degradation. This study provides a detailed analysis of the regulation of NURR1 stability by phosphorylation in synucleinopathies such as Parkinson's disease.


Assuntos
Neurônios Dopaminérgicos/efeitos dos fármacos , Quinase 3 da Glicogênio Sintase/metabolismo , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , alfa-Sinucleína/farmacologia , Linhagem Celular Tumoral , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Humanos , Fosforilação/efeitos dos fármacos
5.
Trends Pharmacol Sci ; 41(9): 598-610, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32711925

RESUMO

Acute respiratory distress syndrome (ARDS) caused by SARS-CoV-2 is largely the result of a dysregulated host response, followed by damage to alveolar cells and lung fibrosis. Exacerbated proinflammatory cytokines release (cytokine storm) and loss of T lymphocytes (leukopenia) characterize the most aggressive presentation. We propose that a multifaceted anti-inflammatory strategy based on pharmacological activation of nuclear factor erythroid 2 p45-related factor 2 (NRF2) can be deployed against the virus. The strategy provides robust cytoprotection by restoring redox and protein homeostasis, promoting resolution of inflammation, and facilitating repair. NRF2 activators such as sulforaphane and bardoxolone methyl are already in clinical trials. The safety and efficacy information of these modulators in humans, together with their well-documented cytoprotective and anti-inflammatory effects in preclinical models, highlight the potential of this armamentarium for deployment to the battlefield against COVID-19.


Assuntos
Anti-Inflamatórios/uso terapêutico , Infecções por Coronavirus/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Pneumonia Viral/tratamento farmacológico , COVID-19 , Citoproteção , Granulócitos/efeitos dos fármacos , Granulócitos/virologia , Homeostase , Humanos , Oxirredução , Pandemias
6.
Eur J Med Chem ; 190: 112090, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-32018096

RESUMO

New multi-target indole and naphthalene derivatives containing the oxadiazolone scaffold as a bioisostere of the melatonin acetamido group have been developed. The novel compounds were characterized at melatonin receptors MT1R and MT2R, quinone reductase 2 (QR2), lipoxygenase-5 (LOX-5), and monoamine oxidases (MAO-A and MAO-B), and also as radical scavengers. We found that selectivity within the oxadiazolone series can be modulated by modifying the side chain functionality and co-planarity with the indole or naphthalene ring. In phenotypic assays, several oxadiazolone-based derivatives induced signalling mediated by the transcription factor NRF2 and promoted the maturation of neural stem-cells into a neuronal phenotype. Activation of NRF2 could be due to the binding of indole derivatives to KEAP1, as deduced from surface plasmon resonance (SPR) experiments. Molecular modelling studies using the crystal structures of QR2 and the KEAP1 Kelch-domain, as well as the recently described X-ray free-electron laser (XFEL) structures of chimeric MT1R and MT2R, provided a rationale for the experimental data and afforded valuable insights for future drug design endeavours.


Assuntos
Fator 2 Relacionado a NF-E2/agonistas , Neurogênese/efeitos dos fármacos , Oxidiazóis/farmacologia , Quinona Redutases/metabolismo , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Animais , Antioxidantes/síntese química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Células CHO , Linhagem Celular Tumoral , Cricetulus , Humanos , Indóis/síntese química , Indóis/metabolismo , Indóis/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Ligantes , Inibidores de Lipoxigenase/síntese química , Inibidores de Lipoxigenase/metabolismo , Inibidores de Lipoxigenase/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Fator 2 Relacionado a NF-E2/metabolismo , Naftalenos/síntese química , Naftalenos/metabolismo , Naftalenos/farmacologia , Oxidiazóis/síntese química , Oxidiazóis/metabolismo , Ligação Proteica
7.
Cell Mol Neurobiol ; 39(3): 331-340, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30830503

RESUMO

Microglial cells are essential mediators of neuroinflammatory processes involved in several pathologies. Moreover, the chemokine fractalkine (CX3CL1) is essential in the crosstalk between neurons and microglia. However, the exact roles of CX3CL1, CX3CL1 receptor (CX3CR1) and microglia signalling are not fully understood in neuroinflammation. In addition, the findings reported on this subject are controversial. In this work, we investigated whether CX3CL1 induced pro-inflammatory signalling activation through NF-κB pathway. We were able to show that CX3CL1 activates the pro-inflammatory pathway mediated by the transcription factor NF-κB as an early response in microglial cells. On the other side, CX3CR1-deficient microglia showed impaired NF-κB axis. Phospho-kinase assay proteome profiles indicated that CX3CL1 induced several kinases such as MAPK's (ERK and JNK), SRC-family tyrosine kinases (YES, FGR, LCK and LYN) and most interesting and also related to NF-κB, the mitogen- and stress-activated kinase-1 (MSK1). Knockdown of MSK1 with short interfering RNAs decreased partially MSK1 protein levels (about 50%), enough to decrease the mRNA levels of Il-1ß, Tnf-α and iNos triggered by stimulation with CX3CL1. These results indicate the relevance of CX3CL1 in the activation of the pro-inflammatory NF-κB signalling pathway through MSK1 in microglial cells.


Assuntos
Quimiocina CX3CL1/farmacologia , Microglia/metabolismo , NF-kappa B/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Receptor 1 de Quimiocina CX3C/metabolismo , Mediadores da Inflamação/metabolismo , Camundongos Knockout , Microglia/efeitos dos fármacos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/metabolismo
8.
Redox Biol ; 22: 101118, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30769286

RESUMO

TAU protein aggregation is the main characteristic of neurodegenerative diseases known as tauopathies. Low-grade chronic inflammation is also another hallmark that indicates crosstalk between damaged neurons and glial cells. Previously, we have demonstrated that neurons overexpressing TAUP301L release CX3CL1, which activates the transcription factor NRF2 signalling to limit over-activation in microglial cells in vitro and in vivo. However, the connection between CX3CL1/CX3CR1 and NRF2 system and its functional implications in microglia are poorly described. We evaluated CX3CR1/NRF2 axis in the context of tauopathies and its implication in neuroinflammation. Regarding the molecular mechanisms that connect CX3CL1/CX3CR1 and NRF2 systems, we observed that in primary microglia from Cx3cr1-/- mice the mRNA levels of Nrf2 and its related genes were significantly decreased, establishing a direct linking between both systems. To determine functional relevance of CX3CR1, migration and phagocytosis assays were evaluated. CX3CR1-deficient microglia showed impaired cell migration and deficiency of phagocytosis, as previously described for NRF2-deficient microglia, reinforcing the idea of the relevance of the CX3CL1/CX3CR1 axis in these events. The importance of these findings was evident in a tauopathy mouse model where the effects of sulforaphane (SFN), an NRF2 inducer, were examined on neuroinflammation in Cx3cr1+/+ and Cx3cr1-/- mice. Interestingly, the treatment with SFN was able to modulate astrogliosis but failed to reduce microgliosis in Cx3cr1-/- mice. These findings suggest an essential role of the CX3CR1/NRF2 axis in microglial function and in tauopathies. Therefore, polymorphisms with loss of function in CX3CR1 or NRF2 have to be taken into account for the development of therapeutic strategies.


Assuntos
Receptor 1 de Quimiocina CX3C/deficiência , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais , Animais , Linhagem Celular , Movimento Celular/genética , Modelos Animais de Doenças , Suscetibilidade a Doenças , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Microglia/imunologia , Fagocitose/genética , Fagocitose/imunologia , Células Piramidais/metabolismo , Células Piramidais/patologia , RNA Mensageiro/genética , Tauopatias/etiologia , Tauopatias/metabolismo , Tauopatias/mortalidade , Proteínas tau/genética , Proteínas tau/metabolismo
9.
Redox Biol ; 18: 173-180, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30029164

RESUMO

Chronic neuroinflammation is a hallmark of the onset and progression of brain proteinopathies such as Alzheimer disease (AD) and it is suspected to participate in the neurodegenerative process. Transcription factor NRF2, a master regulator of redox homeostasis, controls acute inflammation but its relevance in low-grade chronic inflammation of AD is inconclusive due to lack of good mouse models. We have addressed this question in a transgenic mouse that combines amyloidopathy and tauopathy with either wild type (AT-NRF2-WT) or NRF2-deficiency (AT-NRF2-KO). AT-NRF2-WT mice died prematurely, at around 14 months of age, due to motor deficits and a terminal spinal deformity but AT-NRF2-KO mice died roughly 2 months earlier. NRF2-deficiency correlated with exacerbated astrogliosis and microgliosis, as determined by an increase in GFAP, IBA1 and CD11b levels. The immunomodulatory molecule dimethyl fumarate (DMF), a drug already used for the treatment of multiple sclerosis whose main target is accepted to be NRF2, was tested in this preclinical model. Daily oral gavage of DMF during six weeks reduced glial and inflammatory markers and improved cognition and motor complications in the AT-NRF2-WT mice compared with the vehicle-treated animals. This study demonstrates the relevance of the inflammatory response in experimental AD, tightly regulated by NRF2 activity, and provides a new strategy to fight AD.


Assuntos
Doença de Alzheimer/genética , Encéfalo/patologia , Deleção de Genes , Inflamação/genética , Fator 2 Relacionado a NF-E2/genética , Tauopatias/genética , Doença de Alzheimer/patologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Inflamação/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Tauopatias/patologia
10.
Glia ; 66(8): 1752-1762, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29624735

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder characterized by the degeneration of dopaminergic neurons of the substantia nigra and the accumulation of protein aggregates, called Lewy bodies, where the most abundant is alpha-synuclein (α-SYN). Mutations of the gene that codes for α-SYN (SNCA), such as the A53T mutation, and duplications of the gene generate cases of PD with autosomal dominant inheritance. As a result of the association of inflammation with the neurodegeneration of PD, we analyzed whether overexpression of wild-type α-SYN (α-SYNWT ) or mutated α-SYN (α-SYNA53T ) are involved in the neuronal dopaminergic loss and inflammation process, along with the role of the chemokine fractalkine (CX3CL1) and its receptor (CX3CR1). We generated in vivo murine models overexpressing human α-SYNWT or α-SYNA53T in wild type (Cx3cr1+/+ ) or deficient (Cx3cr1-/- ) mice for CX3CR1 using unilateral intracerebral injection of adeno-associated viral vectors. No changes in CX3CL1 levels were observed by immunofluorescence or analysis by qRT-PCR in this model. Interestingly, the expression α-SYNWT induced dopaminergic neuronal death to a similar degree in both genotypes. However, the expression of α-SYNA53T produced an exacerbated neurodegeneration, enhanced in the Cx3cr1-/- mice. This neurodegeneration was accompanied by an increase in neuroinflammation and microgliosis as well as the production of pro-inflammatory markers, which were exacerbated in Cx3cr1-/- mice overexpressing α-SYNA53T . Furthermore, we observed that in primary microglia CX3CR1 was a critical factor in the modulation of microglial dynamics in response to α-SYNWT or α-SYNA53T . Altogether, our study reveals that CX3CR1 plays an essential role in neuroinflammation induced by α-SYNA53T .


Assuntos
Quimiocina CX3CL1/deficiência , Doenças Neurodegenerativas/genética , Doença de Parkinson/metabolismo , alfa-Sinucleína/metabolismo , Animais , Quimiocina CX3CL1/genética , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Camundongos Knockout , Microglia/metabolismo , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/genética , Substância Negra/metabolismo
11.
Materials (Basel) ; 10(5)2017 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-28772924

RESUMO

The choice of a pure cohesive or a pure frictional viscoplastic model to represent the rheological behaviour of a flowslide is of paramount importance in order to obtain accurate results for real cases. The principal goal of the present work is to clarify the influence of the type of viscous model-pure cohesive versus pure frictional-with the numerical reproduction of two different real flowslides that occurred in 1966: the Aberfan flowslide and the Gypsum tailings impoundment flowslide. In the present work, a depth-integrated model based on the v - p w Biot-Zienkiewicz formulation, enhanced with a diffusion-like equation to account for the pore pressure evolution within the soil mass, is applied to both 1966 cases. For the Aberfan flowslide, a frictional viscous model based on Perzyna viscoplasticity is considered, while a pure cohesive viscous model (Bingham model) is considered for the case of the Gypsum flowslide. The numerical approach followed is the SPH method, which has been enriched by adding a 1D finite difference grid to each SPH node in order to improve the description of the pore water evolution in the propagating mixture. The results obtained by the performed simulations are in agreement with the documentation obtained through the UK National Archive (Aberfan flowslide) and the International Commission of large Dams (Gypsum flowslide).

12.
Autophagy ; 12(10): 1902-1916, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27427974

RESUMO

Autophagy is a highly coordinated process that is controlled at several levels including transcriptional regulation. Here, we identify the transcription factor NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2) as a regulator of autophagy gene expression and its relevance in a mouse model of Alzheimer disease (AD) that reproduces impaired APP (amyloid ß precursor protein) and human (Hs)MAPT/TAU processing, clearance and aggregation. We screened the chromatin immunoprecipitation database ENCODE for 2 proteins, MAFK and BACH1, that bind the NFE2L2-regulated enhancer antioxidant response element (ARE). Using a script generated from the JASPAR's consensus ARE sequence, we identified 27 putative AREs in 16 autophagy-related genes. Twelve of these sequences were validated as NFE2L2 regulated AREs in 9 autophagy genes by additional ChIP assays and quantitative RT-PCR on human and mouse cells after NFE2L2 activation with sulforaphane. Mouse embryo fibroblasts of nfe2l2-knockout mice exhibited reduced expression of autophagy genes, which was rescued by an NFE2L2 expressing lentivirus, and impaired autophagy flux when exposed to hydrogen peroxide. NFE2L2-deficient mice co-expressing HsAPPV717I and HsMAPTP301L, exhibited more intracellular aggregates of these proteins and reduced neuronal levels of SQSTM1/p62, CALCOCO2/NDP52, ULK1, ATG5 and GABARAPL1. Also, colocalization of HsAPPV717I and HsMAPTP301L with the NFE2L2-regulated autophagy marker SQSTM1/p62 was reduced in the absence of NFE2L2. In AD patients, neurons expressing high levels of APP or MAPT also expressed SQSTM1/p62 and nuclear NFE2L2, suggesting their attempt to degrade intraneuronal aggregates through autophagy. This study shows that NFE2L2 modulates autophagy gene expression and suggests a new strategy to combat proteinopathies.


Assuntos
Autofagia/genética , Regulação da Expressão Gênica , Fator 2 Relacionado a NF-E2/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Animais , Elementos de Resposta Antioxidante/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Camundongos Transgênicos , Proteínas Associadas aos Microtúbulos/metabolismo , Pessoa de Meia-Idade , Fator 2 Relacionado a NF-E2/deficiência , Neurônios/metabolismo , Neurônios/patologia , Regiões Promotoras Genéticas/genética
13.
Antioxid Redox Signal ; 25(2): 61-77, 2016 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-27009601

RESUMO

AIMS: This preclinical study was aimed at determining whether pharmacological targeting of transcription factor NRF2, a master controller of many homeostatic genes, might provide a disease-modifying therapy in the animal model of Parkinson's disease (PD) that best reproduces the main hallmark of this pathology, that is, α-synucleinopathy, and associated events, including nigral dopaminergic cell death, oxidative stress, and neuroinflammation. RESULTS: Pharmacological activation of NRF2 was achieved at the basal ganglia by repurposing dimethyl fumarate (DMF), a drug already in use for the treatment of multiple sclerosis. Daily oral gavage of DMF protected nigral dopaminergic neurons against α-SYN toxicity and decreased astrocytosis and microgliosis after 1, 3, and 8 weeks from stereotaxic delivery to the ventral midbrain of recombinant adeno-associated viral vector expressing human α-synuclein. This protective effect was not observed in Nrf2-knockout mice. In vitro studies indicated that this neuroprotective effect was correlated with altered regulation of autophagy markers SQTSM1/p62 and LC3 in MN9D, BV2, and IMA 2.1 and with a shift in microglial dynamics toward a less pro-inflammatory and a more wound-healing phenotype. In postmortem samples of PD patients, the cytoprotective proteins associated with NRF2 expression, NQO1 and p62, were partly sequestered in Lewy bodies, suggesting impaired neuroprotective capacity of the NRF2 signature. INNOVATION: These experiments provide a compelling rationale for targeting NRF2 with DMF as a therapeutic strategy to reinforce endogenous brain defense mechanisms against PD-associated synucleinopathy. CONCLUSION: DMF is ready for clinical validation in PD. Antioxid. Redox Signal. 25, 61-77.


Assuntos
Fumarato de Dimetilo/farmacologia , Reposicionamento de Medicamentos , Fator 2 Relacionado a NF-E2/agonistas , Doença de Parkinson/metabolismo , Sinucleínas/metabolismo , Animais , Autofagia , Encéfalo/metabolismo , Fumarato de Dimetilo/administração & dosagem , Modelos Animais de Doenças , Expressão Gênica , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Imuno-Histoquímica , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/farmacologia , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Fenótipo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Sinucleínas/genética
14.
J Biol Chem ; 288(8): 5506-17, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23283970

RESUMO

Orphan receptor Nurr1 participates in the acquisition and maintenance of the dopaminergic cell phenotype, modulation of inflammation, and cytoprotection, but little is known about its regulation. In this study, we report that Nurr1 contains a bipartite nuclear localization signal (NLS) within its DNA binding domain and two leucine-rich nuclear export signals (NES) in its ligand binding domain. Together, these signals regulate Nurr1 shuttling in and out of the nucleus. Immunofluorescence and immunoblot analysis revealed that Nurr1 is mostly nuclear. A Nurr1 mutant lacking the NLS failed to enter the nucleus. The Nurr1 NLS sequence, when fused to green fluorescent protein, led to nuclear accumulation of this chimeric protein, indicating that this sequence was sufficient to direct nuclear localization of Nurr1. Furthermore, two NES were characterized in the ligand binding domain, whose deletion caused Nurr1 to accumulate predominantly in the nucleus. The Nurr1 NES was sensitive to CRM1 and could function as an independent export signal when fused to green fluorescent protein. Sodium arsenite, an agent that induces oxidative stress, promoted nuclear export of ectopically expressed Nurr1 in HEK293T cells, and the antioxidant N-acetylcysteine rescued from this effect. Similarly, in dopaminergic MN9D cells, arsenite induced the export of endogenous Nurr1, resulting in the loss of expression of Nurr1-dependent genes. This study illustrates that Nurr1 shuttling between the cytosol and nucleus is controlled by specific nuclear import and export signals and that oxidative stress can unbalance the distribution of Nurr1 to favor its cytosolic accumulation.


Assuntos
Transporte Ativo do Núcleo Celular , Regulação da Expressão Gênica , Membro 2 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Sequência de Aminoácidos , Arsenitos/farmacologia , Transporte Biológico , Linhagem Celular Tumoral , Citosol/metabolismo , Humanos , Inflamação , Microscopia de Fluorescência/métodos , Modelos Biológicos , Modelos Genéticos , Dados de Sequência Molecular , Sinais de Localização Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Doença de Parkinson/metabolismo , Fenótipo , Homologia de Sequência de Aminoácidos , Compostos de Sódio/farmacologia , Frações Subcelulares/metabolismo
15.
J Immunol ; 181(1): 680-9, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18566435

RESUMO

Because chronic neuroinflammation is a hallmark of neurodegenerative diseases and compromises neuron viability, it is imperative to discover pharmacologic targets to modulate the activation of immune brain cells, the microglia. In this study, we identify the transcription factor Nrf2, guardian of redox homeostasis, as such target in a model of LPS-induced inflammation in mouse hippocampus. Nrf2 knockout mice were hypersensitive to the neuroinflammation induced by LPS, as determined by an increase in F4/80 mRNA and protein, indicative of an increase in microglial cells, and in the inflammation markers inducible NO synthase, IL-6, and TNF-alpha, compared with the hippocampi of wild-type littermates. The aliphatic isothiocyanate sulforaphane elicited an Nrf2-mediated antioxidant response in the BV2 microglial cell line, determined by flow cytometry of cells incubated with the redox sensitive probe dihydrodichlorofluorescein diacetate, and by the Nrf2-dependent induction of the phase II antioxidant enzyme heme oxygenase-1. Animals treated with sulforaphane displayed a 2-3-fold increase in heme oxygenase-1, a reduced abundance of microglial cells in the hippocampus and an attenuated production of inflammation markers (inducible NO synthase, IL-6, and TNF-alpha) in response to LPS. Considering that release of reactive oxygen species is a property of activated microglia, we propose a model in which late induction of Nrf2 intervenes in the down-regulation of microglia. This study opens the possibility of targeting Nrf2 in brain as a means to modulate neuroinflammation.


Assuntos
Encefalite/metabolismo , Encefalite/patologia , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Linhagem Celular , Encefalite/induzido quimicamente , Encefalite/genética , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Isotiocianatos , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fator 2 Relacionado a NF-E2/deficiência , Fator 2 Relacionado a NF-E2/genética , Sulfóxidos , Tiocianatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA