Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Immunol ; 24(12): 2053-2067, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37932455

RESUMO

Following acute injury, stromal cells promote tissue regeneration by a diversity of mechanisms. Time-resolved single-cell RNA sequencing of muscle mesenchymal stromal cells (MmSCs) responding to acute injury identified an 'early-responder' subtype that spiked on day 1 and expressed a notable array of transcripts encoding immunomodulators. IL-1ß, TNF-α and oncostatin M each strongly and rapidly induced MmSCs transcribing this immunomodulatory program. Macrophages amplified the program but were not strictly required for its induction. Transfer of the inflammatory MmSC subtype, tagged with a unique surface marker, into healthy hindlimb muscle induced inflammation primarily driven by neutrophils and macrophages. Among the abundant inflammatory transcripts produced by this subtype, Cxcl5 was stroma-specific and highly upregulated with injury. Depletion of this chemokine early after injury revealed a substantial impact on recruitment of neutrophils, a prolongation of inflammation to later times and an effect on tissue regeneration. Mesenchymal stromal cell subtypes expressing a comparable inflammatory program were found in a mouse model of muscular dystrophy and in several other tissues and pathologies in both mice and humans. These 'early-responder' mesenchymal stromal cells, already in place, permit rapid and coordinated mobilization and amplification of critical cell collaborators in response to injury.


Assuntos
Inflamação , Células-Tronco Mesenquimais , Humanos , Camundongos , Animais , Inflamação/metabolismo , Macrófagos/metabolismo , Células-Tronco Mesenquimais/metabolismo , Neutrófilos/metabolismo , Cicatrização
2.
Clin Exp Immunol ; 211(2): 138-148, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35972909

RESUMO

Foxp3+CD4+ regulatory T cells (Tregs) are famous for their role in maintaining immunological tolerance. With their distinct transcriptomes, growth-factor dependencies and T-cell receptor (TCR) repertoires, Tregs in nonlymphoid tissues, termed "tissue-Tregs," also perform a variety of functions to help assure tissue homeostasis. For example, they are important for tissue repair and regeneration after various types of injury, both acute and chronic. They exert this influence by controlling both the inflammatory tenor and the dynamics of the parenchymal progenitor-cell pool in injured tissues, thereby promoting efficient repair and limiting fibrosis. Thus, tissue-Tregs are seemingly attractive targets for immunotherapy in the context of tissue regeneration, offering several advantages over existing therapies. Using skeletal muscle as a model system, we discuss the existing literature on Tregs' role in tissue regeneration in acute and chronic injuries, and various approaches for their therapeutic modulation in such contexts, including exercise as a natural Treg modulator.


Assuntos
Músculo Esquelético , Linfócitos T Reguladores , Tolerância Imunológica
3.
Cell ; 183(1): 62-75.e17, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32946811

RESUMO

In response to skeletal muscle contraction during exercise, paracrine factors coordinate tissue remodeling, which underlies this healthy adaptation. Here we describe a pH-sensing metabolite signal that initiates muscle remodeling upon exercise. In mice and humans, exercising skeletal muscle releases the mitochondrial metabolite succinate into the local interstitium and circulation. Selective secretion of succinate is facilitated by its transient protonation, which occurs upon muscle cell acidification. In the protonated monocarboxylic form, succinate is rendered a transport substrate for monocarboxylate transporter 1, which facilitates pH-gated release. Upon secretion, succinate signals via its cognate receptor SUCNR1 in non-myofibrillar cells in muscle tissue to control muscle-remodeling transcriptional programs. This succinate-SUCNR1 signaling is required for paracrine regulation of muscle innervation, muscle matrix remodeling, and muscle strength in response to exercise training. In sum, we define a bioenergetic sensor in muscle that utilizes intracellular pH and succinate to coordinate tissue adaptation to exercise.


Assuntos
Músculo Esquelético/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Ácido Succínico/metabolismo , Animais , Humanos , Concentração de Íons de Hidrogênio , Inflamação/metabolismo , Camundongos , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Contração Muscular , Receptores Acoplados a Proteínas G/fisiologia , Transdução de Sinais , Succinatos/metabolismo , Simportadores/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(10): 5402-5408, 2020 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-32102913

RESUMO

A distinct population of Foxp3+CD4+ regulatory T (Treg) cells promotes repair of acutely or chronically injured skeletal muscle. The accumulation of these cells depends critically on interleukin (IL)-33 produced by local mesenchymal stromal cells (mSCs). An intriguing physical association among muscle nerves, IL-33+ mSCs, and Tregs has been reported, and invites a deeper exploration of this cell triumvirate. Here we evidence a striking proximity between IL-33+ muscle mSCs and both large-fiber nerve bundles and small-fiber sensory neurons; report that muscle mSCs transcribe an array of genes encoding neuropeptides, neuropeptide receptors, and other nerve-related proteins; define muscle mSC subtypes that express both IL-33 and the receptor for the calcitonin-gene-related peptide (CGRP); and demonstrate that up- or down-tuning of CGRP signals augments or diminishes, respectively, IL-33 production by muscle mSCs and later accumulation of muscle Tregs. Indeed, a single injection of CGRP induced much of the genetic program elicited in mSCs early after acute skeletal muscle injury. These findings highlight neural/stromal/immune-cell crosstalk in tissue repair, suggesting future therapeutic approaches.


Assuntos
Células-Tronco Mesenquimais/fisiologia , Músculo Esquelético/lesões , Músculo Esquelético/fisiologia , Nociceptores/fisiologia , Regeneração , Linfócitos T Reguladores/imunologia , Animais , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Comunicação Celular , Interleucina-33/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos
5.
Science ; 358(6367)2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-29191879

RESUMO

Bone marrow-derived myeloid cells can accumulate within tumors and foster cancer outgrowth. Local immune-neoplastic interactions have been intensively investigated, but the contribution of the systemic host environment to tumor growth remains poorly understood. Here, we show in mice and cancer patients (n = 70) that lung adenocarcinomas increase bone stromal activity in the absence of bone metastasis. Animal studies reveal that the cancer-induced bone phenotype involves bone-resident osteocalcin-expressing (Ocn+) osteoblastic cells. These cells promote cancer by remotely supplying a distinct subset of tumor-infiltrating SiglecFhigh neutrophils, which exhibit cancer-promoting properties. Experimentally reducing Ocn+ cell numbers suppresses the neutrophil response and lung tumor outgrowth. These observations posit osteoblasts as remote regulators of lung cancer and identify SiglecFhigh neutrophils as myeloid cell effectors of the osteoblast-driven protumoral response.


Assuntos
Adenocarcinoma/patologia , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Osso e Ossos/patologia , Lectinas/metabolismo , Neoplasias Pulmonares/patologia , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Neutrófilos/patologia , Osteoblastos/patologia , Adenocarcinoma de Pulmão , Animais , Densidade Óssea , Células da Medula Óssea/patologia , Osso e Ossos/metabolismo , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Células Mieloides/patologia , Neoplasias Experimentais/patologia , Osteocalcina/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo
6.
Nature ; 552(7683): 72-77, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29219968

RESUMO

Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair 'voxels' that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can be produced within this molecular canvas, enabling the creation of shapes such as letters, a helicoid and a teddy bear. We anticipate that with further optimization of structure design, strand synthesis and assembly procedure even larger structures could be accessible, which could be useful for applications such as positioning functional components.


Assuntos
Algoritmos , DNA/química , DNA/síntese química , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico , Animais , Tomografia com Microscopia Eletrônica , Imageamento Tridimensional , Nucleotídeos/química , Rotação , Análise de Sequência de DNA , Ursidae
7.
Nat Mater ; 15(2): 235-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26595119

RESUMO

Fluorescent imaging of biological systems in the second near-infrared window (NIR-II) can probe tissue at centimetre depths and achieve micrometre-scale resolution at depths of millimetres. Unfortunately, all current NIR-II fluorophores are excreted slowly and are largely retained within the reticuloendothelial system, making clinical translation nearly impossible. Here, we report a rapidly excreted NIR-II fluorophore (∼90% excreted through the kidneys within 24 h) based on a synthetic 970-Da organic molecule (CH1055). The fluorophore outperformed indocyanine green (ICG)-a clinically approved NIR-I dye-in resolving mouse lymphatic vasculature and sentinel lymphatic mapping near a tumour. High levels of uptake of PEGylated-CH1055 dye were observed in brain tumours in mice, suggesting that the dye was detected at a depth of ∼4 mm. The CH1055 dye also allowed targeted molecular imaging of tumours in vivo when conjugated with anti-EGFR Affibody. Moreover, a superior tumour-to-background signal ratio allowed precise image-guided tumour-removal surgery.


Assuntos
Benzopiranos/farmacologia , Carcinoma de Células Escamosas/patologia , Corantes Fluorescentes/farmacologia , Indóis/farmacologia , Neoplasias Experimentais/patologia , Fenilpropionatos/farmacologia , Tiadiazóis/farmacologia , Animais , Benzopiranos/química , Benzopiranos/urina , Linhagem Celular Tumoral , Diagnóstico por Imagem/métodos , Feminino , Humanos , Indóis/química , Indóis/urina , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Espectroscopia de Luz Próxima ao Infravermelho
8.
Small ; 11(47): 6325-30, 2015 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-26529611

RESUMO

Postsynthetic single-walled carbon nanotube (SWCNT) sorting methods such as density gradient ultracentrifugation, gel chromatography, and electrophoresis have all been inspired by established biochemistry separation techniques designed to separate subcellular components. Biochemistry separation techniques have been refined to the degree that parameters such as pH, salt concentration, and temperature are necessary for a successful separation, yet these conditions are only now being applied to SWCNT separation methodologies. Slight changes in pH produce radically different behaviors of SWCNTs inside a density gradient, allowing for the facile separation of ultrahigh purity (6,4) SWCNTs from as-synthesized carbon nanotubes. The (6,4) SWCNTs are novel fluorophores emitting below ≈900 nm and can be easily detected with conventional silicon-based charge-coupled device detectors without the need for specialized InGaAs cameras. The (6,4) SWCNTs are used to demonstrate their potential as a clinically relevant NIR-I fluorescence stain for the immunohistochemical staining of cells and cancer tissue sections displaying high endothelial growth factor receptor levels.


Assuntos
Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Nanotubos de Carbono/química , Silício/química , Linhagem Celular Tumoral , Fluorescência , Humanos , Concentração de Íons de Hidrogênio , Imagem Molecular , Ultracentrifugação
9.
ACS Nano ; 7(4): 3644-52, 2013 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-23521224

RESUMO

Single-walled carbon nanotubes (SWCNTs) exhibit intrinsic fluorescence and strong optical absorption in the near-infrared (NIR) biological window (0.7-1.4 µm), rendering them ideal for in vivo imaging and photothermal therapy. Advances in SWCNT sorting have led to improved nanoelectronics and are promising for nanomedicine. To date, SWCNTs used in vivo consist of heterogeneous mixtures of nanotubes and only a small subset of chirality nanotubes fluoresces or heats under a NIR laser. Here, we demonstrate that separated (6,5) SWCNTs exchanged into a biocompatible surfactant, C18-PMH-mPEG, are more than 6-fold brighter in photoluminescence on the per mass basis, afford clear tumor imaging, and reach requisite photothermal tumor ablation temperatures with a >10-fold lower injected dose than as-synthesized SWCNT mixtures while exhibiting relatively low (6,5) accumulation in the reticuloendothelial system. The intravenous injection of ∼4 µg of (6,5) SWCNTs per mouse (0.254 mg/kg) for dual imaging/photothermal therapy is, by far, the lowest reported dose for nanoparticle-based in vivo therapeutics.


Assuntos
Hipertermia Induzida/métodos , Microscopia de Fluorescência/métodos , Nanoestruturas/uso terapêutico , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Fototerapia/métodos , Animais , Relação Dose-Resposta a Droga , Corantes Fluorescentes/síntese química , Luz , Camundongos , Camundongos Endogâmicos BALB C , Nanotubos de Carbono/química , Resultado do Tratamento
10.
J Am Chem Soc ; 134(25): 10664-9, 2012 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-22667448

RESUMO

Cancer imaging requires selective high accumulation of contrast agents in the tumor region and correspondingly low uptake in healthy tissues. Here, by making use of a novel synthetic polymer to solubilize single-walled carbon nanotubes (SWNTs), we prepared a well-functionalized SWNT formulation with long blood circulation (half-life of ∼30 h) in vivo to achieve ultrahigh accumulation of ∼30% injected dose (ID)/g in 4T1 murine breast tumors in Balb/c mice. Functionalization dependent blood circulation and tumor uptake were investigated through comparisons with phospholipid-PEG solubilized SWNTs. For the first time, we performed video-rate imaging of tumors based on the intrinsic fluorescence of SWNTs in the second near-infrared (NIR-II, 1.1-1.4 µm) window. We carried out dynamic contrast imaging through principal component analysis (PCA) to immediately pinpoint the tumor within ∼20 s after injection. Imaging over time revealed increasing tumor contrast up to 72 h after injection, allowing for its unambiguous identification. The 3D reconstruction of the SWNTs distribution based on their stable photoluminescence inside the tumor revealed a high degree of colocalization of SWNTs and blood vessels, suggesting enhanced permeability and retention (EPR) effect as the main cause of high passive tumor uptake of the nanotubes.


Assuntos
Neoplasias da Mama/diagnóstico , Meios de Contraste/farmacocinética , Nanotubos de Carbono , Animais , Feminino , Bombas de Infusão , Camundongos , Camundongos Endogâmicos BALB C , Polietilenoglicóis/farmacocinética , Espectroscopia de Luz Próxima ao Infravermelho , Fatores de Tempo
11.
J Am Chem Soc ; 132(32): 11006-8, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20698658

RESUMO

A series of five zeolitic imidazolate frameworks (ZIFs) have been synthesized using zinc(II) acetate and five different 4,5-functionalized imidazole units, namely ZIF-25, -71, -93, -96, and -97. These 3-D porous frameworks have the same underlying topology (RHO) with Brunauer-Emmet-Teller surface areas ranging from 564 to 1110 m(2)/g. The only variation in structure arises from the functional groups that are directed into the pores of these materials, which include -CH(3), -OH, -Cl, -CN, -CHO, and -NH(2); therefore these 3-D frameworks are ideal for the study of the effect of functionality on CO(2) uptake. Experimental results show CO(2) uptake at approximately 800 Torr and 298 K ranging from 0.65 mmol g(-1) in ZIF-71 to 2.18 mmol g(-1) in ZIF-96. Molecular modeling calculations reproduce the pronounced dependence of the equilibrium adsorption on functionalization and suggest that polarizability and symmetry of the functionalization on the imidazolate are key factors leading to high CO(2) uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...