Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Int Immunol ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38564192

RESUMO

IgG molecules that bind antigen on the membrane of target cells spontaneously form hexameric rings, thus recruiting C1 to initiate the complement pathway. However, our previous report indicated that a mouse IgG mutant lacking the Cγ1 domain activates the pathway independently of antigen presence through its monomeric interaction with C1q via the CL domain, as well as Fc. In this study, we investigated the potential interaction between C1q and human CL isoforms. Quantitative single molecule observations using high-speed atomic force microscopy revealed that human Cκ exhibited comparable C1q binding capabilities with its mouse counterpart, surpassing the Cλ types, which have a higher isoelectric point than the Cκ domains. Nuclear magnetic resonance and mutation experiments indicated that the human and mouse Cκ domains share a common primary binding site for C1q, centered on Glu194, a residue conserved in the Cκ domains but absent in the Cλ domains. Additionally, the Cγ1 domain, with its high isoelectric point, can cause electrostatic repulsion to the C1q head and impede the C1q-interaction adjustability of the Cκ domain in Fab. The removal of the Cγ1 domain is considered to eliminate these factors and thus promote Cκ interaction with C1q with the potential risk of uncontrolled activation of the complement pathway in vivo in the absence of antigen. However, this research underscores the presence of potential subsites in Fab for C1q binding, offering promising targets for antibody engineering to refine therapeutic antibody design.

2.
Biol Pharm Bull ; 47(1): 334-338, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38143078

RESUMO

This study employed high-speed atomic force microscopy to quantitatively analyze the interactions between therapeutic antibodies and Fcγ receptors (FcγRs). Antibodies are essential components of the immune system and are integral to biopharmaceuticals. The focus of this study was on immunoglobulin G molecules, which are crucial for antigen binding via the Fab segments and cytotoxic functions through their Fc portions. We conducted real-time, label-free observations of the interactions of rituximab and mogamulizumab with the recombinant FcγRIIIa and FcγRIIa. The dwell times of FcγR binding were measured at the single-molecule level, which revealed an extended interaction duration of mogamulizumab with FcγRIIIa compared with that of rituximab. This is linked to enhanced antibody-dependent cellular cytotoxicity that is attributed to the absence of the core fucosylation of Fc-linked N-glycan. This study also emphasizes the crucial role of the Fab segments in the interaction with FcγRIIa as well as that with FcγRIIIa. This approach provided quantitative insight into therapeutic antibody interactions and exemplified kinetic proofreading, where cellular discrimination relies on ligand residence times. Observing the dwell times of antibodies on the effector molecules has emerged as a robust indicator of therapeutic antibody efficacy. Ultimately, these findings pave the way for the development of refined therapeutic antibodies with tailored interactions with specific FcγRs. This research contributes to the advancement of biopharmaceutical antibody design and optimizing antibody-based treatments for enhanced efficacy and precision.


Assuntos
Imunoglobulina G , Receptores de IgG , Receptores de IgG/química , Receptores de IgG/metabolismo , Rituximab/farmacologia , Microscopia de Força Atômica , Ligação Proteica , Fatores Imunológicos , Proteínas de Transporte/metabolismo
3.
Microscopy (Oxf) ; 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930813

RESUMO

The two-dimensional observation of ultrathin sections from resin-embedded specimens provides insufficient understanding of the three-dimensional (3D) morphological information of membranous organelles. The osmium maceration method, developed by Professor Tanaka's group over 40 years ago, is the only technique that allows direct observation of the 3D ultrastructure of membrane systems using scanning electron microscopy (SEM), without the need for any reconstruction process. With this method, the soluble cytoplasmic proteins are removed from the freeze-cracked surface of cells while preserving the integrity of membranous organelles, achieved by immersing tissues in a diluted osmium solution for several days. By employing the maceration method, researchers using SEM have revealed the 3D ultrastructure of organelles such as the Golgi apparatus, mitochondria, and endoplasmic reticulum in various cell types. Recently, we have developed new SEM techniques based on the maceration method to explore further possibilities for this method. These include: (1) a rapid osmium maceration method that reduces the reaction duration of the procedure, (2) a combination method that combines agarose embedding with osmium maceration to elucidate the 3D ultrastructure of organelles in free and cultured cells, and (3) a correlative immunofluorescence and SEM technique that combines cryosectioning with the osmium maceration method, enabling the correlation of the immunocytochemical localization of molecules with the 3D ultrastructure of organelles. In this paper, we review the novel osmium maceration methods described above and discuss their potential and future directions in the field of biology and biomedical research.

4.
PLoS Pathog ; 19(10): e1011681, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37819933

RESUMO

In the case of the Japanese encephalitis virus (JEV), the envelope protein (E), a major component of viral particles, contains a highly conserved N-linked glycosylation site (E: N154). Glycosylation of the E protein is thought to play an important role in the ability of the virus to attach to target cells during transmission; however, its role in viral particle formation and release remains poorly understood. In this study, we investigated the role of N-glycosylation of flaviviral structural proteins in viral particle formation and secretion by introducing mutations in viral structural proteins or cellular factors involved in glycoprotein transport and processing. The number of secreted subviral particles (SVPs) was significantly reduced in N154A, a glycosylation-null mutant, but increased in D67N, a mutant containing additional glycosylation sites, indicating that the amount of E glycosylation regulates the release of SVPs. SVP secretion was reduced in cells deficient in galactose, sialic acid, and N-acetylglucosamine modifications in the Golgi apparatus; however, these reductions were not significant, suggesting that glycosylation mainly plays a role in pre-Golgi transport. Fluorescent labeling of SVPs using a split green fluorescent protein (GFP) system and time-lapse imaging by retention using selective hooks (RUSH) system revealed that the glycosylation-deficient mutant was arrested before endoplasmic reticulum (ER)- Golgi transport. However, the absence of ERGIC-53 and ERGIC-L, ER-Golgi transport cargo receptors that recognize sugar chains on cargo proteins, does not impair SVP secretion. In contrast, the solubility of the N154A mutant of E or the N15A/T17A mutant of prM in cells was markedly lower than that of the wild type, and proteasome-mediated rapid degradation of these mutants was observed, indicating the significance of glycosylation of both prM and E in proper protein folding and assembly of viral particles in the ER.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Flavivirus , Glicosilação , Flavivirus/metabolismo , Proteínas do Envelope Viral/metabolismo , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Vírion/metabolismo
5.
Front Immunol ; 14: 1090898, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36761774

RESUMO

Although interactions of small molecular drugs with serum proteins have been widely studied from pharmacokinetic and pharmacodynamic perspectives, there have been few reports on the effects of serum components on therapeutic antibody functions. This study reports the effect of abundant serum proteins on antibody-dependent cellular cytotoxicity (ADCC) mediated by rituximab and Fcγ receptor III (FcγRIII). Human serum albumin (HSA) and the Fab fragment from the pooled serum polyclonal IgG were found to compromise ADCC as non-competitive inhibitors. Our nuclear magnetic resonance data provided direct evidence for the interactions of HSA with both the Fab and Fc regions of rituximab and also with the extracellular region of FcγRIII (sFcγRIII). The degree of involvement in the interaction decreased in the order of rituximab-Fab > rituximab-Fc > sFcγRIII, suggesting preferential binding of HSA to net positively charged proteins. Although much less pronounced than the effect of HSA, polyclonal IgG-Fab specifically interacted with rituximab-Fc. The NMR data also showed that the serum protein interactions cover the Fc surface extensively, suggesting that they can act as pan-inhibitors against various Fc receptor-mediated functions and pharmacokinetics. Our findings highlight the importance of considering serum-protein interactions in the design and application of antibody-based drugs with increased efficacy and safety.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Imunoglobulina G , Humanos , Rituximab , Receptores Fc , Fagocitose
6.
Methods Mol Biol ; 2556: 19-30, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36175623

RESUMO

Glycans on viruses are major molecules that mediate the communication of the viruses with host cells. Investigating the structure of glycans may be important in the characterization of viruses. In this regard, the high-performance liquid chromatography (HPLC) is a widely used analytical technique. We developed a multidimensional HPLC mapping method that identifies glycan structures. This is achieved by separating and purifying glycans using three types of HPLC columns and comparing the elution time data with known data. This method enables the easy profiling of glycans at the molecular, cellular, and tissue levels and can be used to study the glycans of virological samples such as virus and their hosts. It also enables the discrimination of isomers, which is difficult via mass spectrometry. In this paper, we describe in detail the principle and method of the structural analysis of N-type glycans using the proposed method.


Assuntos
Polissacarídeos , Cromatografia Líquida de Alta Pressão , Isomerismo , Espectrometria de Massas
7.
Commun Biol ; 5(1): 676, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35831428

RESUMO

N-glycans are diversified by a panel of glycosyltransferases in the Golgi, which are supposed to modify various glycoproteins in promiscuous manners, resulting in unpredictable glycosylation profiles in general. In contrast, our previous study showed that fucosyltransferase 9 (FUT9) generates Lewis X glycotopes primarily on lysosome-associated membrane protein 1 (LAMP-1) in neural stem cells. Here, we demonstrate that a contiguous 29-amino acid sequence in the N-terminal domain of LAMP-1 is responsible for promotion of the FUT9-catalyzed Lewis X modification. Interestingly, Lewis X modification was induced on erythropoietin as a model glycoprotein both in vitro and in cells, just by attaching this sequence to its C-terminus. Based on these results, we conclude that the amino acid sequence from LAMP-1 functions as a "Lewis X code", which is deciphered by FUT9, and can be embedded into other glycoproteins to evoke a Lewis X modification, opening up new possibilities for protein engineering and cell engineering.


Assuntos
Fucosiltransferases , Antígenos CD15 , Fucosiltransferases/genética , Glicoproteínas/metabolismo , Glicosilação , Antígenos CD15/genética , Antígenos CD15/metabolismo , Polissacarídeos/metabolismo
8.
Int J Mol Sci ; 23(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35743105

RESUMO

The dystrophin-glycoprotein complex connects the cytoskeleton with base membrane components such as laminin through unique O-glycans displayed on α-dystroglycan (α-DG). Genetic impairment of elongation of these glycans causes congenital muscular dystrophies. We previously identified that glycerol phosphate (GroP) can cap the core part of the α-DG O-glycans and terminate their further elongation. This study examined the possible roles of the GroP modification in cancer malignancy, focusing on colorectal cancer. We found that the GroP modification critically depends on PCYT2, which serves as cytidine 5'-diphosphate-glycerol (CDP-Gro) synthase. Furthermore, we identified a significant positive correlation between cancer progression and GroP modification, which also correlated positively with PCYT2 expression. Moreover, we demonstrate that GroP modification promotes the migration of cancer cells. Based on these findings, we propose that the GroP modification by PCYT2 disrupts the glycan-mediated cell adhesion to the extracellular matrix and thereby enhances cancer metastasis. Thus, the present study suggests the possibility of novel approaches for cancer treatment by targeting the PCYT2-mediated GroP modification.


Assuntos
Distroglicanas , Neoplasias , RNA Nucleotidiltransferases/metabolismo , Distroglicanas/genética , Distroglicanas/metabolismo , Glicerol/metabolismo , Glicerofosfatos , Humanos , Fosfatos/metabolismo , Polissacarídeos/metabolismo , Regulação para Cima
9.
J Biol Chem ; 298(6): 101950, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35447118

RESUMO

Asparagine-linked glycosylation (N-glycosylation) of proteins in the cancer secretome has been gaining increasing attention as a potential biomarker for cancer detection and diagnosis. Small extracellular vesicles (sEVs) constitute a large part of the cancer secretome, yet little is known about whether their N-glycosylation status reflects known cancer characteristics. Here, we investigated the N-glycosylation of sEVs released from small-cell lung carcinoma (SCLC) and non-small-cell lung carcinoma (NSCLC) cells. We found that the N-glycans of SCLC-sEVs were characterized by the presence of structural units also found in the brain N-glycome, while NSCLC-sEVs were dominated by typical lung-type N-glycans with NSCLC-associated core fucosylation. In addition, lectin-assisted N-glycoproteomics of SCLC-sEVs and NSCLC-sEVs revealed that integrin αV was commonly expressed in sEVs of both cancer cell types, while the epithelium-specific integrin α6ß4 heterodimer was selectively expressed in NSCLC-sEVs. Importantly, N-glycomics of the immunopurified integrin α6 from NSCLC-sEVs identified NSCLC-type N-glycans on this integrin subunit. Thus, we conclude that protein N-glycosylation in lung cancer sEVs may potentially reflect the histology of lung cancers.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Glicosilação , Neoplasias Pulmonares , Processamento de Proteína Pós-Traducional , Carcinoma de Pequenas Células do Pulmão , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias Pulmonares/patologia , Polissacarídeos/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia
10.
Glycobiology ; 32(8): 646-650, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35452093

RESUMO

High-performance liquid chromatography (HPLC) elution data provide a useful tool for quantitative glycosylation profiling, discriminating isomeric oligosaccharides. The web application Glycoanalysis by the Three Axes of MS and Chromatography (GALAXY), which is based on the three-dimensional HPLC map of N-linked oligosaccharides with pyridyl-2-amination developed by Dr. Noriko Takahashi, has been extensively used for N-glycosylation profiling at molecular, cellular, and tissue levels. Herein, we describe the updated GALAXY as version 3, which includes new HPLC data including those of glucuronylated and sulfated glycans, an improved graphical user interface using modern technologies, and linked to glycan information in GlyTouCan and the GlyCosmos Portal. This liaison will facilitate glycomic analyses of human and other organisms in conjunction with multiomics data.


Assuntos
Oligossacarídeos , Polissacarídeos , Cromatografia Líquida de Alta Pressão/métodos , Glicosilação , Humanos , Oligossacarídeos/química , Polissacarídeos/química
11.
Commun Biol ; 5(1): 184, 2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35273347

RESUMO

In the cyanobacterial circadian clock system, KaiA, KaiB and KaiC periodically assemble into a large complex. Here we determined the overall structure of their fully assembled complex by integrating experimental and computational approaches. Small-angle X-ray and inverse contrast matching small-angle neutron scatterings coupled with size-exclusion chromatography provided constraints to highlight the spatial arrangements of the N-terminal domains of KaiA, which were not resolved in the previous structural analyses. Computationally built 20 million structural models of the complex were screened out utilizing the constrains and then subjected to molecular dynamics simulations to examine their stabilities. The final model suggests that, despite large fluctuation of the KaiA N-terminal domains, their preferential positionings mask the hydrophobic surface of the KaiA C-terminal domains, hindering additional KaiA-KaiC interactions. Thus, our integrative approach provides a useful tool to resolve large complex structures harboring dynamically fluctuating domains.


Assuntos
Relógios Circadianos , Cianobactérias , Proteínas de Bactérias/química , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Espalhamento a Baixo Ângulo
12.
Int J Mol Sci ; 23(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35216207

RESUMO

Immunoglobulin G (IgG) adopts a modular multidomain structure that mediates antigen recognition and effector functions, such as complement-dependent cytotoxicity. IgG molecules are self-assembled into a hexameric ring on antigen-containing membranes, recruiting the complement component C1q. In order to provide deeper insights into the initial step of the complement pathway, we report a high-speed atomic force microscopy study for the quantitative visualization of the interaction between mouse IgG and the C1 complex composed of C1q, C1r, and C1s. The results showed that the C1q in the C1 complex is restricted regarding internal motion, and that it has a stronger binding affinity for on-membrane IgG2b assemblages than C1q alone, presumably because of the lower conformational entropy loss upon binding. Furthermore, we visualized a 1:1 stoichiometric interaction between C1/C1q and an IgG2a variant that lacks the entire CH1 domain in the absence of an antigen. In addition to the canonical C1q-binding site on Fc, their interactions are mediated through a secondary site on the CL domain that is cryptic in the presence of the CH1 domain. Our findings offer clues for novel-modality therapeutic antibodies.


Assuntos
Complemento C1/imunologia , Imunoglobulina G/imunologia , Ligação Proteica/imunologia , Animais , Sítios de Ligação/imunologia , Ativação do Complemento/imunologia , Camundongos
13.
J Biomol NMR ; 76(1-2): 17-22, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34978013

RESUMO

Mammalian cells are widely used for producing recombinant glycoproteins of pharmaceutical interest. However, a major drawback of using mammalian cells is the high production costs associated with uniformly isotope-labeled glycoproteins due to the large quantity of labeled L-glutamine required for their growth. To address this problem, we developed a cost-saving method for uniform isotope labeling by cultivating the mammalian cells under glutamine-free conditions, which was achieved by co-expression of glutamine synthase. We demonstrate the utility of this approach using fucosylated and non-fucosylated Fc glycoforms of human immunoglobulin G1.


Assuntos
Glutamina , Glicoproteínas , Animais , Glicoproteínas/química , Humanos , Imunoglobulinas , Marcação por Isótopo/métodos , Mamíferos , Ressonância Magnética Nuclear Biomolecular , Proteínas Recombinantes/química
14.
Elife ; 102021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34698634

RESUMO

Sequential mannose trimming of N-glycan, from M9 to M8B and then to oligosaccharides exposing the α1,6-linked mannosyl residue (M7A, M6, and M5), facilitates endoplasmic reticulum-associated degradation of misfolded glycoproteins (gpERAD). We previously showed that EDEM2 stably disulfide-bonded to the thioredoxin domain-containing protein TXNDC11 is responsible for the first step (George et al., 2020). Here, we show that EDEM3 and EDEM1 are responsible for the second step. Incubation of pyridylamine-labeled M8B with purified EDEM3 alone produced M7 (M7A and M7C), M6, and M5. EDEM1 showed a similar tendency, although much lower amounts of M6 and M5 were produced. Thus, EDEM3 is a major α1,2-mannosidase for the second step from M8B. Both EDEM3 and EDEM1 trimmed M8B from a glycoprotein efficiently. Our confirmation of the Golgi localization of MAN1B indicates that no other α1,2-mannosidase is required for gpERAD. Accordingly, we have established the entire route of oligosaccharide processing and the enzymes responsible.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Degradação Associada com o Retículo Endoplasmático/genética , Glicoproteínas/metabolismo , Proteínas de Membrana/genética , Oligossacarídeos/metabolismo , alfa-Manosidase/genética , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Humanos , Proteínas de Membrana/metabolismo , alfa-Manosidase/metabolismo
15.
Biochem Biophys Res Commun ; 579: 8-14, 2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34583196

RESUMO

α-Dystroglycan (α-DG) is a glycoprotein specifically modified with O-mannosyl glycans bearing long polysaccharides, termed matriglycans, which comprise repeating units of glucuronic acid and xylose. The matriglycan is linked to the O-mannosyl glycan core through two ribitol phosphate units that can be replaced with glycerol phosphate (GroP) units synthesized by fukutin and fukutin-related protein that transfer GroP from CDP-Gro. Here, we found that forced expression of the bacterial CDP-Gro synthase, TagD, from Bacillus subtilis could result in the overproduction of CDP-Gro in human colon carcinoma HCT116 cells. Western blot and liquid chromatography-tandem mass spectrometry analyses indicated that α-DG prepared from the TagD-expressing HCT116 cells contained abundant GroP and lacked matriglycans. Using the GroP-containing recombinant α-DG-Fc, we developed a novel monoclonal antibody, termed DG2, that reacts with several truncated glycoforms of α-DG, including GroP-terminated glycoforms lacking matriglycans; we verified the reactivity of DG2 against various types of knockout cells deficient in the biosynthesis of matriglycans. Accordingly, forced expression of TagD in HCT116 cells resulted in the reduction of matriglycans and an increase in DG2 reactivity. Collectively, our results indicate that DG2 could serve as a useful tool to determine tissue distribution and function of α-DG lacking matriglycans under physiological and pathophysiological conditions.


Assuntos
Anticorpos Monoclonais/química , Distroglicanas/química , Laminina/química , Isoformas de Proteínas/química , Animais , Bacillus subtilis , Sistemas CRISPR-Cas , Cromatografia Líquida , DNA Complementar/metabolismo , Feminino , Ácido Glucurônico/química , Glicopeptídeos/química , Células HCT116 , Humanos , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos BALB C , Fosfatos , Polissacarídeos , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Ribitol/química , Xilose
16.
Biophys Physicobiol ; 18: 16-27, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33954079

RESUMO

The distinguished feature of neutron as a scattering probe is an isotope effect, especially the large difference in neutron scattering length between hydrogen and deuterium. The difference renders the different visibility between hydrogenated and deuterated proteins. Therefore, the combination of deuterated protein and neutron scattering enables the selective visualization of a target domain in the complex or a target protein in the multi-component system. Despite of this fascinating character, there exist several problems for the general use of this method: difficulty and high cost for protein deuteration, and control and determination of deuteration ratio of the sample. To resolve them, the protocol of protein deuteration techniques is presented in this report. It is strongly expected that this protocol will offer more opportunity for conducting the neutron scattering studies with deuterated proteins.

17.
Phys Chem Chem Phys ; 23(16): 9753-9760, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33881019

RESUMO

Oligosaccharides play versatile roles in various biological systems but are difficult to characterize from a structural viewpoint due to their remarkable degrees of freedom in internal motion. Therefore, molecular dynamics simulations have been widely used to delineate the dynamic conformations of oligosaccharides. However, hardly any methods have thus far been available for the comprehensive characterization of simulation-derived conformational ensembles of oligosaccharides. In this research, we attempted to develop a non-linear multivariate analysis by employing a kernel method using two homologous high-mannose-type oligosaccharides composed of ten and eleven residues as model molecules. These oligosaccharides' conformers derived from simulations were mapped into reproductive kernel Hilbert space with a positive definite function in which all required non-redundant variables for describing the oligosaccharide conformations can be treated in a non-biased manner. By applying Gaussian mixture model clustering, the oligosaccharide conformers were successfully classified by different funnels in the free-energy landscape, enabling a systematic comparison of conformational ensembles of the homologous oligosaccharides. The results shed light on the contributions of intraresidue conformational factors such as the hydroxyl group orientation and/or ring puckering state to their global conformational dynamics. Our methodology will open opportunities to explore oligosaccharides' conformational spaces, and more generally, molecules with high degrees of motional freedom.


Assuntos
Oligossacarídeos/química , Configuração de Carboidratos , Sequência de Carboidratos , Simulação de Dinâmica Molecular/estatística & dados numéricos , Análise Multivariada , Termodinâmica
18.
Biomolecules ; 10(11)2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114581

RESUMO

Baculovirus-infected silkworms are promising bioreactors for producing recombinant glycoproteins, including antibodies. Previously, we developed a method for isotope labeling of glycoproteins for nuclear magnetic resonance (NMR) studies using silkworm larvae reared on an artificial diet containing 15N-labeled yeast crude protein extract. Here, we further develop this method by introducing a technique for the expression of isotope-labeled glycoproteins by silkworm pupae, which has several potential advantages relative to larvae-based techniques in terms of production yield, ease of handling, and storage. Here, we fed fifth instar larvae an artificial diet with an optimized composition containing [methyl-13C]methionine, leading to pupation. Nine-day-old pupae were then injected with recombinant Bombyx mori nucleopolyhedrovirus (BmNPV) bacmid for expression of recombinant human immunoglobulin G (IgG). From the whole-body homogenates of pupae, 0.35 mg/pupa of IgG was harvested, which is a yield that is five times higher than can be obtained from larvae. Recombinant IgG, thus prepared, exhibited mainly three kinds of pauci-mannose-type oligosaccharides and had a 13C-enrichment ratio of approximately 80%. This enabled selective observation of NMR signals originating from the methionyl methyl group of IgG, confirming its conformational integrity. These data demonstrate the utility of silkworm pupae as factories for producing recombinant glycoproteins with amino-acid-selective isotope labeling.


Assuntos
Glicoproteínas/biossíntese , Marcação por Isótopo , Pupa/metabolismo , Animais , Bombyx/metabolismo , Glicoproteínas/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química
19.
Anal Chem ; 92(21): 14383-14392, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32881480

RESUMO

Sialic acid attached to nonreducing ends of glycan chains via different linkages is associated with specific interactions and physiological events. Linkage-specific derivatization of sialic acid is of great interest for distinguishing sialic acids by mass spectrometry, specifically for events governed by sialyl linkage types. In the present study, we demonstrate that α-2,3/8-sialyl linkage-specific amidation of esterified sialyloligosaccharides can be achieved via an intramolecular lactone. The method of lactone-driven ester-to-amide derivatization for sialic acid linkage-specific alkylamidation, termed LEAD-SALSA, employs in-solution ester-to-amide conversion to directly generate stable and sialyl linkage-specific glycan amides from their ester form by mixing with a preferred amine, resulting in the easy assignments of sialyl linkages by comparing the signals of esterified and amidated glycan. Using this approach, we demonstrate the accumulation of altered N-glycans in cardiac muscle tissue during mouse aging. Furthermore, we find that the stability of lactone is important for ester-to-amide conversion based on experiments and density functional theory calculations of reaction energies for lactone formation. By using energy differences of lactone formation, the LEAD-SALSA method can be used not only for the sialyl linkage-specific derivatization but also for distinguishing the branching structure of galactose linked to sialic acid. This simplified and direct sialylglycan discrimination will facilitate important studies on sialylated glycoconjugates.

20.
Nat Commun ; 11(1): 1368, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170195

RESUMO

MCFD2 and ERGIC-53, which are the products of causative genes of combined factor V and factor VIII deficiency, form a cargo receptor complex responsible for intracellular transport of these coagulation factors in the early secretory pathway. In this study, using an NMR technique, we successfully identified an MCFD2-binding segment from factor VIII composed of a 10 amino acid sequence that enhances its secretion. This prompted us to examine possible effects of attaching this sequence to recombinant glycoproteins on their secretion. We found that the secretion level of recombinant erythropoietin was significantly increased simply by tagging it with the passport sequence. Our findings not only provide molecular basis for the intracellular trafficking of coagulation factors and their genetic deficiency but also offer a potentially useful tool for increasing the production yields of recombinant glycoproteins of biopharmaceutical interest.


Assuntos
Proteínas de Transporte/metabolismo , Glicoproteínas/metabolismo , Proteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sequência de Aminoácidos , Retículo Endoplasmático/fisiologia , Eritropoetina/metabolismo , Fator V , Fator VIII/metabolismo , Glicoproteínas/genética , Complexo de Golgi/fisiologia , Humanos , Lectinas de Ligação a Manose/metabolismo , Transporte Proteico , Via Secretória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...