Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetica ; 149(2): 117-128, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33837503

RESUMO

The Ayu (Plecoglossus altivelis altivelis) population on Yaku-shima Island, Kagoshima Prefecture, Japan represents the southernmost population of the subspecies and is considered to be facing extinction. We investigated the genetic characteristics of Ayu in the Miyanoura River (MYU) in the northeast of the island and the Kurio River (KRO) in the southwest of the island, using partial sequences of mitochondrial (mt) control region and polymorphic microsatellite (simple sequence repeat: SSR) loci. The mtDNA analysis revealed that the Yaku-shima Island population was significantly differentiated from other Ayu populations; additionally, the MYU and KRO populations were significantly different from each other in terms of mtDNA (pairwise ΦST = 0.5826, P < 0.01) and SSR (pairwise ΦST = 0.1598, P < 0.01) analyses, indicating very little or no gene flow between them. The mtDNA haplotype diversity values were minimal for KRO and somewhat lower for MYU (h = 0.8176) than for each population from the mainland of Japan (Honshu-Kyushu) and the Korean Peninsula (h = 0.9905-1.0000). The mean values of expected heterozygosity (He) of SSRs were also lower in KRO (mean He = 0.555) than in MYU (mean He = 0.649). A considerably small effective population size (Ne = 100.1 for MYU, 151.2 for KRO) and a bottleneck effect for Yaku-shima Island population were suggested by SSR analysis. These findings underscore the importance of monitoring the genetic diversity of Ayu on Yaku-shima Island and the necessity of designing conservation policies for each river's population.


Assuntos
Especiação Genética , Osmeriformes/genética , Polimorfismo Genético , Animais , DNA Mitocondrial/genética , Evolução Molecular , Haplótipos , Repetições de Microssatélites , Osmeriformes/classificação , Filogenia
2.
Reprod Biol ; 15(2): 106-12, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26051459

RESUMO

To develop techniques for seedling production of yellowfin tuna, the behavior of primordial germ cells (PGCs) and gonadogenesis were examined at 1-30 days post hatching (dph) using morphometric analysis, histological examination, and in situ hybridization. Immediately after hatching, PGCs were located on the dorsal side of the posterior end of the rectum under the peritoneum of the larvae, and at 3 dph they came into contact with stromal cells. PGCs and stromal cells gradually moved forward from the anus prior to 5 dph. At 7-10 dph, germ cells were surrounded by stromal cells and the gonadal primordia were formed. In individuals collected at 12 dph, PGCs were detected by in situ hybridization using a vasa mRNA probe that is a germ-cell-specific detection marker. The proliferation of germ cells in the gonadal primordia began at 7-10 dph. We observed double the number of germ cells at 30 dph (22 ± 3.2 cells), compared to that at 1 dph (11 ± 2.1 cells). Therefore, based on our data and previous reports, the initial germ cell proliferation of yellowfin tuna is relatively slower than that of other fish species.


Assuntos
Oogênese , Óvulo/citologia , Desenvolvimento Sexual , Espermatogênese , Espermatozoides/citologia , Atum/crescimento & desenvolvimento , Animais , Aquicultura , Biomarcadores/metabolismo , Proliferação de Células , Feminino , Hibridização In Situ/veterinária , Masculino , Óvulo/metabolismo , Panamá , Espermatozoides/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Atum/anatomia & histologia , Atum/metabolismo
3.
Gene ; 549(1): 46-57, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25026502

RESUMO

Delineation of the fish family Percichthyidae (Percomorphaceae) has a long and convoluted history, with recent morphological-based studies restricting species members to South American and Australian freshwater and catadromous temperate perches. Four recent nuclear gene-based phylogenetic studies, however, found that the Percichthyidae was not monophyletic and was nested within a newly discovered inter-familial clade of Percomorphaceae, the Centrarchiformes, which comprises the Centrarchidae and 12 other families. Here, we reexamined the systematics of the Percichthyidae and Centrarchiformes based on new mitogenomic information. Our mitogenomic results are globally congruent with the recent nuclear gene-based studies although the overall amount of phylogenetic signal of the mitogenome is lower. They do not support the monophyly of the Percichthyidae, because the catadromous genus Percalates is not exclusively related to the freshwater percichthyids. The Percichthyidae (minus Percalates) and Percalates belong to a larger clade, equivalent to the Centrarchiformes, but their respective sister groups are unresolved. Because all recent analyses recover a monophyletic Centrarchiformes but with substantially different intra-relationships, we performed a simultaneous analysis for a character set combining the mitogenome and 19 nuclear genes previously published, for 22 centrarchiform taxa. This analysis furthermore indicates that the Centrarchiformes are divided into three lineages and the superfamily Cirrhitoidea is monophyletic as well as the temperate and freshwater centrarchiform perch-like fishes. It also clarifies some of the relationships within the freshwater Percichthyidae.


Assuntos
Núcleo Celular/genética , Genoma Mitocondrial , Percas/classificação , Percas/genética , Animais , Evolução Molecular , Genes Mitocondriais , Filogenia , Alinhamento de Sequência , Análise de Sequência de DNA
4.
Mol Phylogenet Evol ; 53(1): 258-66, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19540351

RESUMO

Percomorpha has been described as the "(unresolved) bush at the top" of the teleostean phylogenies and its intrarelationships are intrinsically difficult to solve because of its huge diversity (>15,000 spp.) and ill-defined higher taxa. Patterns of facial nerves, such as those of the ramus lateralis accessorius (RLA), have been considered as one of the candidate characters to delimit a monophyletic group within the percomorphs. Six families of the suborder Percoidei (Arripidae, Dichistiidae, Kyphosidae, Terapontidae, Kuhliidae, and Oplegnathidae) and suborder Stromateoidei (including six families) share the unique pattern 10 of RLA and it has been suggested that those fishes form a monophyletic group across the two perciform suborders. To evaluate the usefulness of the RLA pattern 10 as a phylogenetic marker within the percomorphs, we newly determined whole mitochondrial genome (mitogenome) sequences for the 13 species having RLA pattern 10 and their putatively, closely-related species (5 spp.). Unambiguously aligned sequences (14,263 bp) from those 18 species plus 50 percomrphs and two outgroups (total 70 species) were subjected to partitioned maximum likelihood and Bayesian analyses. The resulting trees clearly indicated that there were at least two independent origins of the unique facial nerve pattern: one in a common ancestor of Kyphosidae, Terapontidae, Kuhliidae, and Oplegnathidae and another one in that of the percoid Arripidae and Stromateoidei. Thus further detailed anatomical studies are needed to clarify the homology of this character between the two lineages. It should be noted that the latter two taxa (Arripidae and Stromateoidei) formed an unexpected, highly-supported monophyletic group together with Scombridae and possibly Chiasmodontidae and Bramidae, all lacking RLA pattern 10 (the former two are members of other perciform suborders Scombroidei and Trachinoidei, respectively). This novel, trans-subordinal clade has never been suggested by any morphological studies, although they share a common ecological characteristic, dwelling in the pelagic realm and often associated with long-distance migrations.


Assuntos
Evolução Molecular , Peixes/genética , Genoma Mitocondrial , Filogenia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Peixes/anatomia & histologia , Peixes/classificação , Funções Verossimilhança , Análise de Sequência de DNA
5.
Mol Phylogenet Evol ; 45(1): 89-101, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17490896

RESUMO

Tetraodontiformes includes approximately 350 species assigned to nine families, sharing several reduced morphological features of higher teleosts. The order has been accepted as a monophyletic group by many authors, although several alternative hypotheses exist regarding its phylogenetic position within the higher teleosts. To date, acanthuroids, zeiforms, and lophiiforms have been proposed as sister-groups of the tetraodontiforms. The monophyly and sister-group status was investigated using whole mitochondrial genome (mitogenome) sequences from 44 purposefully-chosen species (26 sequences newly-determined during the study) that fully represent the major tetraodontiform lineages plus all the groups that have been hypothesized as being close relatives. Partitioned Bayesian analyses were conducted with the three datasets that comprised concatenated nucleotide sequences from 13 protein-coding genes (with and without, or with RY-coding, 3rd codon positions), plus 22 transfer RNA and two ribosomal RNA genes. The resultant trees were well resolved and largely congruent, with most internal branches being supported by high posterior probabilities. Mitogenomic data strongly supported the monophyly of tetraodontiform fishes, placing them as a sister-group of either Lophiiformes plus Caproidei or Caproidei only. The sister-group relationship between Acanthuroidei and Tetraodontiformes was statistically rejected using Bayes factors. These results were confirmed by a reanalysis of the previously published nuclear RAG1 gene sequences using the Bayesian method. Within the Tetraodontiformes, however, monophylies of the three superfamilies were not recovered and further taxonomic sampling and subsequent efforts should clarify these relationships.


Assuntos
DNA Mitocondrial , Evolução Molecular , Genoma , Filogenia , Tetraodontiformes/genética , Animais , Teorema de Bayes , Modelos Biológicos , Análise de Sequência de DNA , Tetraodontiformes/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA