Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Hematol ; : 104191, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493949

RESUMO

Erythropoiesis in the adult bone marrow relies on mitochondrial membrane transporters to facilitate heme and hemoglobin production. Erythrocytes in the bone marrow are produced although the differentiation of erythroid progenitor cells that originate from hematopoietic stem cells (HSCs). Whether and how mitochondria transporters potentiate HSCs and affect their differentiation toward erythroid lineage remains unclear. Here, we show that the ATP-binding cassette (ABC) transporter 10 (Abcb10), located on the inner mitochondrial membrane, is essential for HSC maintenance and erythroid-lineage differentiation. Induced deletion of Abcb10 in adult mice significantly increased erythroid progenitor cell and decreased HSC number within the bone marrow (BM). Functionally, Abcb10-deficient HSCs exhibited significant decreases in stem cell potential but with a skew toward erythroid-lineage differentiation. Mechanistically, deletion of Abcb10 rendered HSCs with excess mitochondrial iron accumulation and oxidative stress yet without alteration in mitochondrial bioenergetic function. However, impaired hematopoiesis could not be rescued through the in vivo administration of a mitochondrial iron chelator or antioxidant to Abcb10-deficient mice. Abcb10-mediated mitochondrial iron transfer is thus pivotal for the regulation of physiologic HSC potential and erythroid-lineage differentiation.

2.
Oral Dis ; 29(3): 1089-1101, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34743383

RESUMO

OBJECTIVE: Cherubism is a genetic disorder characterised by bilateral jawbone deformation. The associated jawbone lesions regress after puberty, whereas severe cases require surgical treatment. Although several drugs have been tested, fundamental treatment strategies for cherubism have not been established. The effectiveness of imatinib has recently been reported; however, its pharmaceutical mechanism remains unclear. In this study, we tested the effects of imatinib using a cherubism mouse model. METHODS: We used Sh3bp2 P416R cherubism mutant mice, which exhibit systemic organ inflammation and osteopenia. The effects of imatinib were determined using primary bone marrow-derived macrophages. Imatinib was administered intraperitoneally to the mice, and serum tumour necrosis factor-α (TNFα), organ inflammation and bone properties were examined. RESULTS: The cherubism mutant macrophages produced higher levels of TNFα in response to lipopolysaccharide compared to wild-type macrophages, and imatinib did not significantly suppress TNFα production. Although imatinib suppressed osteoclast formation in vitro, administering it in vivo did not suppress organ inflammation and osteopenia. CONCLUSION: The in vivo administration of imatinib had a minimal therapeutic impact in cherubism mutant mice. To establish better pharmaceutical interventions, it is necessary to integrate new findings from murine models with clinical data from patients with a definitive diagnosis of cherubism.


Assuntos
Doenças Ósseas Metabólicas , Querubismo , Camundongos , Animais , Querubismo/tratamento farmacológico , Querubismo/genética , Fator de Necrose Tumoral alfa/metabolismo , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/genética , Inflamação/patologia , Fenótipo
3.
Front Immunol ; 13: 926175, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35936010

RESUMO

Tumor necrosis factor (TNF) receptor-associated periodic syndrome (TRAPS) is an autoinflammatory periodic fever syndrome associated with heterozygous mutations in TNFRSF1A, which encodes TNF receptor type I (TNFR1). Although possible proinflammatory mechanisms have been proposed, most previous studies were performed using in vitro overexpression models, which could lead to undesirable inflammatory responses due to artificial overexpression. It is crucial to reproduce heterozygous mutations at physiological expression levels; however, such studies remain limited. In this study, we generated TRAPS mutant mice and analyzed their phenotypes. Three Tnfrsf1a mutant strains were generated by introducing T79M, G87V, or T90I mutation. T79M is a known mutation responsible for TRAPS, whereas G87V is a TRAPS mutation that we have reported, and T90I is a variant of unknown significance. Using these murine models, we investigated whether TRAPS mutations could affect the inflammatory responses in vivo and in vitro. We found that none of the mutant mice exhibited detectable inflammatory phenotypes under standard housing conditions for 1 year. Interestingly, TRAPS mutant (T79M and G87V) mice had reduced mortality rates after the administration of lipopolysaccharide (LPS) and D-galactosamine, which induce TNFα-dependent lethal hepatitis. Moreover, TRAPS mutations strongly suppressed the development of TNFα-mediated arthritis when crossed with human TNFα transgenic mice. In in vitro primary bone marrow-derived macrophage cultures, the T79M and G87V mutations attenuated the inflammatory responses to TNFα compared with the wild-type, whereas these mutations did not alter the responsiveness of these cells to LPS. The T90I mutant macrophages behaved similarly to wild type in response to LPS and TNFα. The TNFR1 levels were increased in whole-cell lysates of TRAPS mutant macrophages, whereas the cell surface expression of TNFR1 was significantly decreased in TRAPS mutant macrophages. Taken together, TRAPS mutations did not augment the inflammatory responses to TNFα and LPS; instead, they suppressed the response to TNFα via decreased cell surface expression of TNFR1. The stimulation of lymphotoxin-α, adenosine triphosphate, and norepinephrine in primary macrophages or various stimuli in murine splenocytes did not induce detectable inflammatory responses. In conclusion, TRAPS mutations suppressed responsiveness to TNFα, and TRAPS-associated inflammation is likely induced by unconfirmed disease-specific proinflammatory factors.


Assuntos
Doenças Hereditárias Autoinflamatórias/patologia , Receptores Tipo I de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa , Animais , Febre , Doenças Hereditárias Autoinflamatórias/metabolismo , Humanos , Lipopolissacarídeos , Camundongos , Camundongos Transgênicos , Mutação , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Síndrome , Fator de Necrose Tumoral alfa/metabolismo
4.
Int J Mol Sci ; 23(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35457132

RESUMO

Patients with psoriasis are frequently complicated with metabolic syndrome; however, it is not fully understood how obesity and dyslipidemia contribute to the pathogenesis of psoriasis. To investigate the mechanisms by which obesity and dyslipidemia exacerbate psoriasis using murine models and neonatal human epidermal keratinocytes (NHEKs), we used wild-type and Apoe-deficient dyslipidemic mice, and administered a high-fat diet for 10 weeks to induce obesity. Imiquimod was applied to the ear for 5 days to induce psoriatic dermatitis. To examine the innate immune responses of NHEKs, we cultured and stimulated NHEKs using IL-17A, TNF-α, palmitic acid, and leptin. We found that obesity and dyslipidemia synergistically aggravated psoriatic dermatitis associated with increased gene expression of pro-inflammatory cytokines and chemokines. Treatment of NHEKs with palmitic acid and leptin amplified pro-inflammatory responses in combination with TNF-α and IL-17A. Additionally, pretreatment with palmitic acid and leptin enhanced IL-17A-mediated c-Jun N-terminal kinase phosphorylation. These results revealed that obesity and dyslipidemia synergistically exacerbate psoriatic skin inflammation, and that metabolic-disorder-associated inflammatory factors, palmitic acid, and leptin augment the activation of epidermal keratinocytes. Our results emphasize that management of concomitant metabolic disorders is essential for preventing disease exacerbation in patients with psoriasis.


Assuntos
Dermatite , Dislipidemias , Psoríase , Animais , Dermatite/metabolismo , Dislipidemias/metabolismo , Humanos , Inflamação/patologia , Interleucina-17/metabolismo , Queratinócitos/metabolismo , Leptina/metabolismo , Camundongos , Obesidade/metabolismo , Ácido Palmítico/metabolismo , Psoríase/patologia , Pele/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
mBio ; 10(4)2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31455656

RESUMO

Recruitment of monocytes to the infection site is critical for host resistance against Mycobacterium tuberculosis CD157 has a crucial role in neutrophil and monocyte transendothelial migration and adhesion, but its role in tuberculosis (TB) is unclear. Here, we show that both mRNA and protein levels of Cd157 are significantly increased during M. tuberculosis infection. Deficiency of Cd157 impaired host response to M. tuberculosis infection by increasing bacterial burden and inflammation in the lung in the murine TB model. In vitro experiments show that the bactericidal ability was compromised in Cd157 knockout (KO) macrophages, which was due to impaired M. tuberculosis-induced reactive oxygen species (ROS) production. We further reveal that CD157 interacts with TLR2 and PKCzeta and facilitates M. tuberculosis-induced ROS production in Cd157 KO macrophages, which resulted in enhanced M. tuberculosis killing. For the clinic aspect, we observe that the expression of CD157 decreases after effective anti-TB chemotherapy. CD157 is specifically increased in pleural fluid in tuberculous pleurisy patients compared to pneumonia and lung cancer patients. Interestingly, the levels of soluble CD157 (sCD157) correlate with human peripheral monocyte-derived macrophage bactericidal activity. Exogenous application of sCD157 could compensate for macrophage bactericidal ability and restore ROS production. In conclusion, we have identified a novel protective immune function of CD157 during M. tuberculosis infection via TLR2-dependent ROS production. Application of sCD157 might be an effective strategy for host-directed therapy against TB in those with insufficient CD157 production.IMPORTANCE Tuberculosis, a chronic bacterial disease caused by Mycobacterium tuberculosis, remains a major global health problem. CD157, a dual-function receptor and ß-NAD+-metabolizing ectoenzyme, promotes cell polarization, regulates chemotaxis induced through the high-affinity fMLP receptor, and controls transendothelial migration. The role of CD157 in TB pathogenesis remains unknown. In this study, we find that both mRNA and protein levels of CD157 are significantly increased in TB. Deficiency of CD157 impaired host defense against M. tuberculosis infection both in vivo and in vitro, which is mediated by an interaction among CD157, TLR2, and PKCzeta. This interaction facilitates M. tuberculosis-induced macrophagic ROS production, which enhances macrophage bactericidal activity. Interestingly, the sCD157 level in plasma is reversibly associated with MDM M. tuberculosis killing activity. By uncovering the role of CD157 in pathogenesis of TB for the first time, our work demonstrated that application of soluble CD157 might be an effective strategy for host-directed therapy against TB.


Assuntos
ADP-Ribosil Ciclase/metabolismo , Antígenos CD/metabolismo , Mycobacterium tuberculosis/fisiologia , Proteína Quinase C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor 2 Toll-Like/metabolismo , Tuberculose/imunologia , ADP-Ribosil Ciclase/genética , Animais , Antígenos CD/genética , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Humanos , Inflamação/imunologia , Inflamação/patologia , Pulmão/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Camundongos , Monócitos/imunologia , Monócitos/microbiologia , Proteína Quinase C/genética , Receptor 2 Toll-Like/genética , Tuberculose/microbiologia , Tuberculose/patologia
6.
RMD Open ; 5(2): e000853, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31321075

RESUMO

Objective: Animal models for human diseases are especially valuable for clarifying molecular mechanisms before or around the onset. As a model for rheumatoid arthritis (RA), we utilise knock-in mice gp130F759. They have a Y759F mutation in gp130, a common receptor subunit for interleukin 6 (IL-6) family cytokines. Definitive arthritis develops around 8 months old and the incidence reaches 100% around 1 year old. Careful examination in the clinical course revealed very subtle resistance in flexibility of joints at 5 months old. Therefore, pathophysiological changes in gp130F759 were examined to dissect molecular mechanisms for preclinical phase of RA. Methods: Severity of arthritis in gp130F759 was evaluated with a clinical score system and histological quantification. Serum cytokines, autoantibodies and C reactive protein (CRP) were measured. Changes in the synovium were analysed by real-time PCR, flow cytometry and immunohistochemistry. Results: Around 5 months old, various types of cytokines, rheumatoid factor (RF), anti-circular citrullinated peptide IgM and CRP increased in the sera of gp130F759. Enhancement of neovascularisation, synovial hyperplasia and fibrosis was observed. Also, increases in haematopoietic cells dominated by innate immune cells and gene expression of Il6 and Padi4 were detected in the joints. Il6 was expressed by non-haematopoietic synovial cells, whereas PAD4 protein was detected in the synovial neutrophils. Padi4 is induced in neutrophils in vitro by IL-6. Increases of phospho-STAT3 and PAD4 protein were detected in the synovium. Deletion of IL-6 in gp130F759 normalised the amount of PAD4 protein in the joints. Conclusion: The IL-6-PAD4 axis operates in the earliest phase of arthritis in gp130F759, implicating it in early RA.


Assuntos
Artrite Reumatoide/sangue , Receptor gp130 de Citocina/genética , Interleucina-6/metabolismo , Desiminases de Arginina em Proteínas/metabolismo , Animais , Artrite Reumatoide/epidemiologia , Artrite Reumatoide/patologia , Autoanticorpos/sangue , Proteína C-Reativa/metabolismo , Citocinas/sangue , Feminino , Humanos , Imunoglobulina M/metabolismo , Incidência , Masculino , Camundongos , Camundongos Endogâmicos C57BL/genética , Modelos Animais , Mutação , Neutrófilos/metabolismo , Peptídeos Cíclicos/metabolismo , Fator Reumatoide/metabolismo , Índice de Gravidade de Doença , Membrana Sinovial/metabolismo , Membrana Sinovial/patologia , Sinoviócitos/metabolismo
7.
Immun Inflamm Dis ; 4(4): 401-412, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27980775

RESUMO

INTRODUCTION: Interleukin (IL)-17A is a cytokine originally reported to induce neutrophil-mediated inflammation and anti-microbial activity. The CD4+ T cells, which produce IL-17A, have been well characterized as Th17 cells. On the other hand, IL-17A-producing TCR γδ+ T cells have been reported to participate in the immune response at an early stage of infection with Listeria monocytogenes and Mycobacterium bovis in mice. However, the involvement of IL-17A in protective immunity was not clearly demonstrated in the chronic stage of M. tuberculosis-infected mice. METHODS: We analyzed role of IL-17A in host defense against chronically infected M. tuberculosis using IL-17A KO mice. RESULTS: We found that TCR γδ+ T cells are a primary source of IL-17A, but that mycobacterial antigen-specific Th17 cells were hardly detected even at the chronic stage of M. tuberculosis infection. IL-17A-deficient mice showed a decreased survival rate, and increased bacterial burden in the lungs after the infection when compared to the wild-type mice. Furthermore, a histological analysis showed an impaired granuloma formation in the infected lungs of IL-17A-deficient mice, which was considered to be due to a decrease of IFN-γ and TNF at the chronic stage. CONCLUSION: Our data suggest that the IL-17A-producing TCR γδ+ T cells, rather than the Th17 cells, in the infected lungs are an indispensable source of protective immunity against M. tuberculosis infection.


Assuntos
Imunidade Celular , Interleucina-17/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Tuberculose/imunologia , Animais , Pulmão/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
Infect Immun ; 84(2): 573-9, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26644377

RESUMO

Listeria monocytogenes is a bacterial pathogen which establishes intracellular parasitism in various cells, including macrophages and nonhematopoietic cells, such as hepatocytes. It has been reported that several proinflammatory cytokines have pivotal roles in innate protection against L. monocytogenes infection. We found that a proinflammatory cytokine, interleukin 22 (IL-22), was expressed by CD3(+) CD4(+) T cells at an early stage of L. monocytogenes infection in mice. To assess the influence of IL-22 on L. monocytogenes infection in hepatocytes, cells of a human hepatocellular carcinoma line, HepG2, were treated with IL-22 before L. monocytogenes infection in vitro. Gene expression analysis of the IL-22-treated HepG2 cells identified phospholipase A2 group IIA (PLA2G2A) as an upregulated antimicrobial molecule. Addition of recombinant PLA2G2A to the HepG2 culture significantly suppressed L. monocytogenes infection. Culture supernatant of the IL-22-treated HepG2 cells contained bactericidal activity against L. monocytogenes, and the activity was abrogated by a specific PLA2G2A inhibitor, demonstrating that HepG2 cells secreted PLA2G2A, which killed extracellular L. monocytogenes. Furthermore, colocalization of PLA2G2A and L. monocytogenes was detected in the IL-22-treated infected HepG2 cells, which suggests involvement of PLA2G2A in the mechanism of intracellular killing of L. monocytogenes by HepG2 cells. These results suggest that IL-22 induced at an early stage of L. monocytogenes infection enhances innate immunity against L. monocytogenes in the liver by stimulating hepatocytes to produce an antimicrobial molecule, PLA2G2A.


Assuntos
Fosfolipases A2 do Grupo II/metabolismo , Hepatócitos/enzimologia , Imunidade Inata , Interleucinas/imunologia , Listeria monocytogenes/imunologia , Listeriose/imunologia , Fígado/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Fosfolipases A2 do Grupo II/genética , Células Hep G2 , Hepatócitos/imunologia , Hepatócitos/microbiologia , Humanos , Interleucinas/genética , Listeria monocytogenes/efeitos dos fármacos , Listeriose/enzimologia , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Análise em Microsséries , Interleucina 22
9.
Clin Immunol ; 150(1): 12-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24316591

RESUMO

We previously reported that somatic mutations in the p53 gene accumulated at a higher frequency in AID(activation induced cytidine deaminase)(+) RA-FLS, which may result in the malfunction of p53, causing the tumor-like properties of RA-FLS. Among the p53 mutations identified from 3 sources of AID(+) RA-FLS, we focused on the p53R248Q mutation because it was reported to enhance the invasiveness of lung cancer cells and to have dominant-negative activity for pro-apoptotic molecules. We obtained cDNA encoding the p53R248Q mutant and introduced it into the MH7A RA-FLS cell line. P53R248Q dramatically suppressed the expression of the pro-apoptotic molecule p53AIP1 even under oxidative stress, which normally upregulates p53AIP1, leading to apoptosis. Moreover, overexpression of p53AIP1 increased apoptosis, whereas p53AIP1 knockdown rescued the cells from apoptosis. Together, these studies indicate the critical role of p53AIP1 under DNA damaging stresses for cell fate determination in RA-FLS containing the p53R248Q mutation.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/fisiologia , Proteína Supressora de Tumor p53/genética , Artrite Reumatoide , Linhagem Celular , Fibroblastos , Técnicas de Silenciamento de Genes , Humanos , Peróxido de Hidrogênio/farmacologia , Mutação , Oxidantes/farmacologia , Estresse Oxidativo , Fosforilação , RNA Interferente Pequeno/genética , Membrana Sinovial/citologia , Proteína Supressora de Tumor p53/metabolismo
10.
Immunol Lett ; 141(2): 246-53, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22093807

RESUMO

Circuit of chronic inflammation in the joints of rheumatoid arthritis (RA) starts from the production of inflammatory cytokines by fibroblast-like synoviocytes (FLS) stimulated by TNFα produced by inflammatory cells mainly composed of macrophages. In this context, TNFα/NF-κB pathway plays an essential role for the transcription of pro-inflammatory cytokines. Here we show that the kinetics of pro-inflammatory cytokine genes induced by TNFα in FLS from RA was synchronized with that of A20, ABIN1, and ABIN3 that have been thought as negative regulators for NF-κB activation. Furthermore, based on this finding, we could tentatively categorize the RA-FLS into two groups; TNFα low-responder and high-responder FLS. The high responders that have abundant mRNA levels of NF-κB inhibitory molecules were also accompanied with the marked induction of the pro-inflammatory cytokines by the stimulation with TNFα. The low responders RA-FLS did not show this property, nor did FLS from osteoarthritis. Phosphorylation dependent degradation of IκBα as well as NF-κB activation upon stimulation with TNFα was significantly enhanced in the high-responder FLS lines. Surprisingly, single transfection of each NF-κB inhibitor was enough to facilitate the transcription of pro-inflammatory cytokines, suggesting that there is an unknown pro-inflammatory function for A20 and ABIN family proteins in RA-FLS.


Assuntos
Artrite Reumatoide/imunologia , Proteínas de Ligação a DNA/metabolismo , Fibroblastos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Nucleares/metabolismo , Proteínas/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Fibroblastos/imunologia , Fibroblastos/patologia , Humanos , Inflamação , Mediadores da Inflamação/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/imunologia , Interleucina-6/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , NF-kappa B/imunologia , NF-kappa B/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/imunologia , Proteínas/genética , Proteínas/imunologia , Transdução de Sinais/imunologia , Membrana Sinovial/patologia , Ativação Transcricional/genética , Transgenes/genética , Proteína 3 Induzida por Fator de Necrose Tumoral alfa , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
11.
J Immunol ; 184(8): 4414-22, 2010 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-20212094

RESUMO

Granulomas play an essential role in the sequestration and killing of mycobacteria in the lung; however, the mechanisms of their development and maturation are still not clearly understood. IL-17A is involved in mature granuloma formation in the mycobacteria-infected lung. Therefore, IL-17A gene-knockout (KO) mice fail to develop mature granulomas in the Mycobacterium bovis bacille Calmette-Guérin (BCG)-infected lung. This study analyzed the mechanism of IL-17A-dependent mature granuloma formation in the mycobacteria-infected lung. The IL-17A KO mice showed a normal level of nascent granuloma formation on day 14 but failed to develop mature granulomas on day 28 after the BCG infection in the lung. The observation implies that IL-17A is required for the maturation of granuloma from the nascent to mature stage. TCR gammadelta T cells expressing TCR Vgamma4 or Vgamma6 were identified as the major IL-17A-producing cells that resided in the BCG-induced lung granuloma. The adoptive transfer of the IL-17A-producing TCR gammadelta T cells reconstituted granuloma formation in the IL-17A KO mice. The expression of ICAM-1 and LFA-1, which are adhesion molecules important in granuloma formation, decreased in the lung of the BCG-infected IL-17A KO mice, and their expression was induced on BCG-infected macrophages in coculture with IL-17A-producing TCR gammadelta T cells. Furthermore, IL-17A KO mice showed not only an impaired mature granuloma formation, but also an impaired protective response to virulent Mycobacterium tuberculosis. Therefore, IL-17A produced by TCR gammadelta T cells plays a critical role in the prevention of M. tuberculosis infection through the induction of mature granuloma formation.


Assuntos
Granuloma/imunologia , Granuloma/patologia , Interleucina-17/fisiologia , Mycobacterium bovis/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/patologia , Animais , Movimento Celular/imunologia , Células Cultivadas , Técnicas de Cocultura , Granuloma/microbiologia , Interleucina-17/deficiência , Interleucina-17/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mycobacterium bovis/patogenicidade , Receptores de Antígenos de Linfócitos T gama-delta/biossíntese , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Subpopulações de Linfócitos T/transplante , Tuberculose Pulmonar/prevenção & controle , Virulência/imunologia
12.
Int Immunol ; 22(4): 307-18, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20167585

RESUMO

Although the importance of T(h)1-type immune response in protection against mycobacterial infection is well recognized, its regulatory mechanism in the Mycobacterium tuberculosis (Mtb)-infected lung is not well characterized. To address this issue, we analyzed kinetics of induction of mycobacterial antigen-specific CD4(+) T(h)1 T cells after mycobacterial infection in P25 TCR-transgenic (Tg) mice which express TCR alpha and beta chains from a mycobacterial Ag85B-specific MHC class II A(b)-restricted CD4(+) T-cell clone. To supply normal regulatory T-cell repertoire, we transferred normal spleen T cells into the P25 TCR-Tg mice before infection. High dose subcutaneous infection with Mtb or Mycobacterium bovis bacillus Calmette-Guérin (BCG) induced P25 TCR-Tg CD4(+) T(h)1 cells within a week. In contrast, high-dose Mtb or BCG infection into the lung failed to induce P25 TCR-Tg CD4(+) T(h)1 cells at the early stage of the infection. Furthermore, low-dose Mtb infection into the lung induced P25 TCR-Tg CD4(+) T(h)1 cells on day 21 in the mediastinal lymph node but not in the lung. IL-10 was partially involved in the suppression of T(h)1 induction in the lung because pretreatment of mice with anti-IL-10 antibody resulted in increase of P25 TCR-Tg CD4(+) T(h)1 cells in the Mtb-infected lung on day 21 of the infection, whereas neutralization of transforming growth factor-beta, another important suppressive cytokine in the lung, showed no effects on the T(h)1 induction. Our data suggest that induction of anti-mycobacterial CD4(+) T(h)1 cells is suppressed in the mycobacteria-infected lung partially by IL-10.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Pulmão/imunologia , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Tuberculose Pulmonar/imunologia , Animais , Regulação para Baixo , Interleucina-10/imunologia , Pulmão/microbiologia , Linfonodos/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Especificidade do Receptor de Antígeno de Linfócitos T
13.
Immunology ; 128(4): 556-63, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19930045

RESUMO

Both CD4(+) and CD8(+) T cells are important in protection against Mycobacterium tuberculosis infection. To evaluate the effect of vaccination with Mycobacterium bovis bacille Calmette-Guérin (BCG) on the CD8(+) T-cell response to pulmonary M. tuberculosis infection, we analyzed the kinetics of CD8(+) T cells specific to the mycobacterial Mtb32a(309-318) epitope, which is shared by M. tuberculosis and M. bovis BCG, in the lung of mice infected with M. tuberculosis. The CD8(+) T cells were detected by staining lymphocytes with pentameric major histocompatibility complex (MHC) class I H-2D(b-)Mtb32a(209-318) peptide complex and were analysed by flow cytometry. Mtb32a-specific CD8(+) T cells became detectable on day 14, and reached a plateau on day 21, in the lung of M. tuberculosis-infected unvaccinated mice. Subcutaneous vaccination with M. bovis BCG in the footpads induced Mtb32a-specific CD8(+) T cells in the draining lymph nodes (LNs) on day 7 and their numbers further increased on day 14. When M. bovis BCG-vaccinated mice were exposed to pulmonaryinfection with M. tuberculosis 4 weeks after vaccination, the Mtb32a-specific CD8(+) T cells in the infected lung became detectable on day 7 and reached a plateau on day 14, which was 1 week earlier than in the unvaccinated mice. The pulmonary CD8(+) T cells from the BCG-vaccinated M. tuberculosis-infected mice produced interferon-gamma in response to Mtb32a(209-318) peptide on day 7 of the infection, whereas those of unvaccinated mice did not. The results demonstrate that induction of mycobacterial antigen-specific protective CD8(+) T cells in the M. tuberculosis-infected lung is accelerated by subcutaneous vaccination with M. bovis BCG.


Assuntos
Vacina BCG/imunologia , Linfócitos T CD8-Positivos/imunologia , Pulmão/imunologia , Tuberculose Pulmonar/imunologia , Animais , Apresentação de Antígeno/imunologia , Antígenos de Bactérias/imunologia , Vacina BCG/administração & dosagem , Epitopos de Linfócito T/imunologia , Feminino , Antígenos H-2/imunologia , Antígeno de Histocompatibilidade H-2D , Injeções Subcutâneas , Interferon gama/biossíntese , Linfonodos/imunologia , Mediastino , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium bovis/imunologia , Vacinação/métodos
14.
J Immunol ; 181(5): 3456-63, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18714018

RESUMO

IL-17A is originally identified as a proinflammatory cytokine that induces neutrophils. Although IL-17A production by CD4(+) Th17 T cells is well documented, it is not clear whether IL-17A is produced and participates in the innate immune response against infections. In the present report, we demonstrate that IL-17A is expressed in the liver of mice infected with Listeria monocytogenes from an early stage of infection. IL-17A is important in protective immunity at an early stage of listerial infection in the liver because IL-17A-deficient mice showed aggravation of the protective response. The major IL-17A-producing cells at the early stage were TCR gammadelta T cells expressing TCR Vgamma4 or Vgamma6. Interestingly, TCR gammadelta T cells expressing both IFN-gamma and IL-17A were hardly detected, indicating that the IL-17A-producing TCR gammadelta T cells are distinct from IFN-gamma-producing gammadelta T cells, similar to the distinction between Th17 and Th1 in CD4(+) T cells. All the results suggest that IL-17A is a newly discovered effector molecule produced by TCR gammadelta T cells, which is important in innate immunity in the liver.


Assuntos
Imunidade Inata , Interleucina-17/imunologia , Listeriose/imunologia , Hepatopatias/microbiologia , Receptores de Antígenos de Linfócitos T gama-delta , Linfócitos T/imunologia , Animais , Interferon gama/biossíntese , Interleucina-17/biossíntese , Listeria monocytogenes , Camundongos , Camundongos Knockout , Subpopulações de Linfócitos T/imunologia
15.
Vaccine ; 26(7): 924-32, 2008 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-18192091

RESUMO

It is generally accepted that cellular immunity plays a critical role in the protection against Mycobacterium tuberculosis, an intracellular pathogen. Recently, however, an increasing number of reports indicate the important contribution of humoral immunity against mycobacterial infection. Since M. tuberculosis establishes its primary lesion in the lung, induction of humoral immunity in the airway tract by mucosal immunization regime could provide protective immunity against tuberculosis. In this study, mycobacterial heparin-binding haemagglutinin adhesin (HBHA) was used as an immunization antigen because HBHA is an essential virulence factor required for the infection of lung epithelial cells and extrapulmonary dissemination of mycobacteria. The effects of intranasal immunization with a yeast-expressed recombinant (r) HBHA co-administered with a mucosal adjuvant cholera toxin (CT) on the induction of humoral and cellular immunity were examined, and its protective efficacy against pulmonary challenge infection with Mycobacterium bovis bacillus Calmette-Guérin (BCG) was evaluated. HBHA-specific antibodies were induced in serum and airway tract of immunized mice, which specifically recognized native HBHA expressed on M. bovis BCG. Th1-type immunity against mycobacterial antigens was also enhanced in the lung of immunized mice after pulmonary BCG infection. Furthermore, the immunization suppressed bacterial load in the spleen after pulmonary BCG infection. These results indicate that systemic and local humoral immunity induced by the HBHA-based mucosal vaccine impairs extrapulmonary dissemination, thus providing immune protection against mycobacterial infection.


Assuntos
Administração Intranasal , Lectinas , Mycobacterium bovis/patogenicidade , Proteínas Recombinantes , Baço/microbiologia , Vacinas contra a Tuberculose/administração & dosagem , Tuberculose/prevenção & controle , Adjuvantes Imunológicos/administração & dosagem , Animais , Anticorpos Antibacterianos/sangue , Toxina da Cólera/administração & dosagem , Toxina da Cólera/imunologia , Hemaglutininas/administração & dosagem , Hemaglutininas/genética , Hemaglutininas/imunologia , Imunização , Lectinas/administração & dosagem , Lectinas/genética , Lectinas/imunologia , Pulmão/microbiologia , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Mycobacterium bovis/imunologia , Mycobacterium bovis/isolamento & purificação , Proteínas Recombinantes/administração & dosagem , Proteínas Recombinantes/imunologia , Linfócitos T/imunologia , Tuberculose/microbiologia , Vacinas contra a Tuberculose/genética , Vacinas contra a Tuberculose/imunologia
16.
J Immunol ; 178(6): 3786-96, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17339477

RESUMO

IL-17 is a cytokine that induces neutrophil-mediated inflammation, but its role in protective immunity against intracellular bacterial infection remains unclear. In the present study, we demonstrate that IL-17 is an important cytokine not only in the early neutrophil-mediated inflammatory response, but also in T cell-mediated IFN-gamma production and granuloma formation in response to pulmonary infection by Mycobacterium bovis bacille Calmette-Guérin (BCG). IL-17 expression in the BCG-infected lung was detected from the first day after infection and the expression depended on IL-23. Our observations indicated that gammadelta T cells are a primary source of IL-17. Lung-infiltrating T cells of IL-17-deficient mice produced less IFN-gamma in comparison to those from wild-type mice 4 wk after BCG infection. Impaired granuloma formation was also observed in the infected lungs of IL-17-deficient mice, which is consistent with the decreased delayed-type hypersensitivity response of the infected mice against mycobacterial Ag. These data suggest that IL-17 is an important cytokine in the induction of optimal Th1 response and protective immunity against mycobacterial infection.


Assuntos
Imunidade Inata , Interleucina-17/imunologia , Mycobacterium bovis/imunologia , Células Th1/imunologia , Tuberculoma/imunologia , Tuberculose Pulmonar/imunologia , Animais , Citocinas/imunologia , Hipersensibilidade Tardia/genética , Hipersensibilidade Tardia/imunologia , Hipersensibilidade Tardia/patologia , Imunidade Celular , Imunidade Inata/genética , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Interleucina-17/deficiência , Camundongos , Neutrófilos/imunologia , Neutrófilos/patologia , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Células Th1/patologia , Fatores de Tempo , Tuberculoma/genética , Tuberculoma/patologia , Tuberculoma/veterinária , Tuberculose Pulmonar/genética , Tuberculose Pulmonar/veterinária
17.
Microbiol Immunol ; 51(1): 135-47, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17237609

RESUMO

Osteopontin (OPN) has been reported to enhance the interferon (IFN)-gamma-producing Th1-type T cell response through the induction of interleukin (IL)-12 and the suppression of IL-10. We therefore investigated whether OPN could enhance Th1 induction by vaccination against bacterial antigen in vivo. Unexpectedly, the co-inoculation of OPN suppressed the induction of IFN-gamma-producing CD4(+) T cells and T cell proliferative response after the subcutaneous heat-killed Listeria monocytogenes(HKLM) immunization. These results suggest that OPN down-regulates T cell priming. Since dendritic cells (DC) play a pivotal role in T cell priming, we next analyzed the effects of OPN on DC. The addition of OPN into the culture of either bone marrow-derived immature DC or an immature DC line JAWSII showed no effects on the expression of MHC class II, CD80, and CD86 molecules before and after HKLM stimulation. Consistently, in vitro OPN-treated DC showed a normal antigen-presenting function to an established Listeria-specific Th1-type T cells. However, when the DC were transferred into the footpad with HKLM and OPN, the migration of the transferred DC into the regional LN was suppressed in comparison to the DC transferred with HKLM alone. Furthermore, the addition of OPN into the culture of the DC line and HKLM severely suppressed the HKLM-induced expression of CCR7 chemokine receptor which is an important factor in the migration of DC into LN. All the results suggest the existence of an OPN-mediated negative feedback mechanism in the T cell immune response through the regulation of DC migration.


Assuntos
Antígenos de Bactérias/imunologia , Linfócitos T CD4-Positivos/imunologia , Células Dendríticas/imunologia , Osteopontina/imunologia , Animais , Antígenos de Superfície/análise , Linhagem Celular , Movimento Celular , Células Cultivadas , Feminino , Citometria de Fluxo , Interferon gama/biossíntese , Interleucina-12/biossíntese , Listeria/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores CCR7 , Receptores de Quimiocinas/genética
18.
J Immunol ; 175(12): 8024-31, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16339539

RESUMO

Fas ligand (FasL) has the potential to induce inflammation accompanied by massive neutrophil infiltration. We previously reported that FasL rapidly induces the production of various inflammatory cytokines including IL-1beta and IL-17. In this study, we investigated the mechanism of the FasL-induced IL-17 production. We found that the culture supernatant of mouse resident peritoneal exudate cells (PEC) cocultured with FasL-expressing tumor (FFL) cells induced IL-17 production in freshly isolated resident PEC. Anti-IL-1beta Ab strongly inhibited the IL-17-inducing activity. However, rIL-1beta by itself induced only weak IL-17 production. Intriguingly, anti-IL-12 Ab but not an IL-15-neutralizing agent, IL15R-Fc, strongly inhibited the FasL-induced IL-17-inducing activity. IL-23, which shares the p40 subunit with IL-12, but not IL-12 itself, induced IL-17 production synergistically with IL-1beta in resident PEC. FasL induced the production of IL-23 in PEC in vivo and in vitro, and IL-17 production following the i.p. injection of FFL cells was severely impaired in p40-/- mice, indicating that IL-23 plays an important role in the FasL-induced IL-17 production. FFL also induced the production of IL-23 in bone marrow- or PEC-derived dendritic cells (DCs). Finally, FasL induced only weak p40 production in a mixture of p40-/- and Fas-/- DC, indicating that FasL induces IL-23 production in DC mainly in a cell-autonomous manner.


Assuntos
Células Dendríticas/metabolismo , Interleucina-17/biossíntese , Interleucinas/biossíntese , Glicoproteínas de Membrana/fisiologia , Fatores de Necrose Tumoral/fisiologia , Animais , Técnicas de Cocultura , Proteína Ligante Fas , Humanos , Inflamação , Interleucina-1/fisiologia , Interleucina-23 , Subunidade p19 da Interleucina-23 , Interleucinas/fisiologia , Camundongos , Peritônio/citologia , Células Tumorais Cultivadas/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...