Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-998742

RESUMO

@#Introduction: The human tau protein is a key protein involved in various neurodegenerative disease (NDs) including Parkinson’s disease (PD). The protein has high tendency to aggregate into oligomers, subsequently generating insoluble mass in the brain. Symptoms of PD include tremor, bradykinesia, rigidity, and postural instability. Currently drugs for PD treatment are only symptom-targeted while effective therapeutic treatment remains a challenge. The objective of this study is to identify novel promising anti-PD drugs using computational techniques. Method: ligand-based (LB) receptor modelling was conducted using LigandScout, validated and subjected to Glide XP docking, virtual screening, ADMET, and molecular dynamics predictions. Results: The adopted LB modelling generated pharmacophoric features of 5 hydrogen bond donors, 1 aromatic rings, and 7 hydrogen bond acceptors. The validation result indicated GH score of 0.73 and EF of 36.30 as validation protocols, probing it to be an ideal model. Using 3D query of the modelling a total of 192 compounds were retrieved from interbioscreen database containing 70,436 natural compounds. Interestingly, ligands 1, 2, 3, 4 and 5 orderly indicated higher binding affinities to the receptor with Glide XP docking of -7.451, -7.368, -7.101, -6.878, and -6.789 compared to a clinical drug Anle138b with -4.552 kcal/mol respectively. Furthermore, molecular dynamics and pkCSM pharmacokinetics demonstrated ligands 1, 2, & 4 having better stability and low toxicity profiles compared to the reference. Conclusion: In summary, the study pave way for discovery of small molecules that could be recommended as adjuvant /single candidate as ant-PD candidates upon further translational study.

2.
Turk J Biol ; 45(4): 503-517, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34803450

RESUMO

The nsp3 macrodomain is implicated in the viral replication, pathogenesis and host immune responses through the removal of ADP-ribosylation sites during infections of coronaviruses including the SARS-CoV-2. It has ever been modulated by macromolecules including the ADP-ribose until Ni and co-workers recently reported its inhibition and plasticity enhancement unprecedentedly by remdesivir metabolite, GS-441524, creating an opportunity for investigating other biodiverse small molecules such as ß-Carboline (ßC) alkaloids. In this study, 1497 ßC analogues from the HiT2LEAD chemical database were screened, using computational approaches of Glide XP docking, molecular dynamics simulation and pk-CSM ADMET predictions. Selectively, ßC ligands, 129, 584, 1303 and 1323 demonstrated higher binding affinities to the receptor, indicated by XP docking scores of -10.72, -10.01, -9.63 and -9.48 kcal/mol respectively than remdesivir and GS-441524 with -4.68 and -9.41 kcal/mol respectively. Consistently, their binding free energies were -36.07, -23.77, -24.07 and -17.76 kcal/mol respectively, while remdesivir and GS-441524 showed -21.22 and -24.20 kcal/mol respectively. Interestingly, the selected ßC ligands displayed better stability and flexibility for enhancing the plasticity of the receptor than GS-441524, especially 129 and 1303. Their predicted ADMET parameters favour druggability and low expressions for toxicity. Thus, they are recommended as promising adjuvant/standalone anti-SARS-CoV-2 candidates for further study.Key words: SARS-CoV-2, nsp3 macrodomain, ADP-ribose, ß-carboline, bioinformatics, drug design.

3.
Infect Genet Evol ; 93: 104944, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34052418

RESUMO

Since the emergence of their primitive strains, the complexity surrounding their pathogenesis, constant genetic mutation and translation are contributing factors to the scarcity of a successful vaccine for coronaviruses till moment. Although, the recent announcement of vaccine breakthrough for COVID-19 renews the hope, however, there remains a major challenge of accessibility to urgently match the rapid global therapeutic demand for curtailing the pandemic, thereby creating an impetus for further search. The reassessment of results from a stream of experiments is of enormous importance in identifying bona fide lead-like candidates to fulfil this quest. This review comprehensively highlights the common pathomechanisms and pharmacological targets of HCoV-OC43, SARS-CoV-1, MERS-CoV and SARS-CoV-2, and potent therapeutic potentials from basic and clinical experimental investigations. The implicated targets for the prevention and treatment include the viral proteases (Mpro, PLpro, 3CLpro), viral structural proteins (S- and N-proteins), non-structural proteins (nsp 3, 8, 10, 14, 16), accessory protein (ns12.9), viroporins (3a, E, 8a), enzymes (RdRp, TMPRSS2, ADP-ribosyltransferase, MTase, 2'-O-MTase, TATase, furin, cathepsin, deamidated human triosephosphate isomerase), kinases (MAPK, ERK, PI3K, mTOR, AKT, Abl2), interleukin-6 receptor (IL-6R) and the human host receptor, ACE2. Notably among the 109 overviewed inhibitors include quercetin, eriodictyol, baicalin, luteolin, melatonin, resveratrol and berberine from natural products, GC373, NP164 and HR2P-M2 from peptides, 5F9, m336 and MERS-GD27 from specific human antibodies, imatinib, remdesivir, ivermectin, chloroquine, hydroxychloroquine, nafamostat, interferon-ß and HCQ from repurposing libraries, some iron chelators and traditional medicines. This review represents a model for further translational studies for effective anti-CoV therapeutic designs.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/etiologia , Coronavirus/patogenicidade , Interações Hospedeiro-Patógeno , Antivirais/uso terapêutico , Coronavirus/efeitos dos fármacos , Coronavirus/metabolismo , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/virologia , Coronavirus Humano OC43/efeitos dos fármacos , Coronavirus Humano OC43/patogenicidade , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/patogenicidade , Ensaios Clínicos Controlados Aleatórios como Assunto , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade , Proteínas Virais/química , Proteínas Virais/genética , Proteínas Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA