Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 628(8008): 527-533, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38600389

RESUMO

Topology1-3 and interactions are foundational concepts in the modern understanding of quantum matter. Their nexus yields three important research directions: (1) the competition between distinct interactions, as in several intertwined phases, (2) the interplay between interactions and topology that drives the phenomena in twisted layered materials and topological magnets, and (3) the coalescence of several topological orders to generate distinct novel phases. The first two examples have grown into major areas of research, although the last example remains mostly unexplored, mainly because of the lack of a material platform for experimental studies. Here, using tunnelling microscopy, photoemission spectroscopy and a theoretical analysis, we unveil a 'hybrid' topological phase of matter in the simple elemental-solid arsenic. Through a unique bulk-surface-edge correspondence, we uncover that arsenic features a conjoined strong and higher-order topology that stabilizes a hybrid topological phase. Although momentum-space spectroscopy measurements show signs of topological surface states, real-space microscopy measurements unravel a unique geometry of topologically induced step-edge conduction channels revealed on various natural nanostructures on the surface. Using theoretical models, we show that the existence of gapless step-edge states in arsenic relies on the simultaneous presence of both a non-trivial strong Z2 invariant and a non-trivial higher-order topological invariant, which provide experimental evidence for hybrid topology. Our study highlights pathways for exploring the interplay of different band topologies and harnessing the associated topological conduction channels in engineered quantum or nano-devices.

2.
ACS Nano ; 17(11): 10164-10171, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37186957

RESUMO

Recent experiments report a charge density wave (CDW) in the antiferromagnet FeGe, but the nature of the charge ordering and the associated structural distortion remains elusive. We discuss the structural and electronic properties of FeGe. Our proposed ground state phase accurately captures atomic topographies acquired by scanning tunneling microscopy. We show that the 2 × 2 × 1 CDW likely results from the Fermi surface nesting of hexagonal-prism-shaped kagome states. FeGe is found to exhibit distortions in the positions of the Ge atoms instead of the Fe atoms in the kagome layers. Using in-depth first-principles calculations and analytical modeling, we demonstrate that this unconventional distortion is driven by the intertwining of magnetic exchange coupling and CDW interactions in this kagome material. The movement of Ge atoms from their pristine positions also enhances the magnetic moment of the Fe kagome layers. Our study indicates that magnetic kagome lattices provide a material candidate for exploring the effects of strong electronic correlations on the ground state and their implications for transport, magnetic, and optical responses in materials.

3.
Phys Rev Lett ; 130(6): 066402, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36827563

RESUMO

Novel topological phases of matter are fruitful platforms for the discovery of unconventional electromagnetic phenomena. Higher-fold topology is one example, where the low-energy description goes beyond standard model analogs. Despite intensive experimental studies, conclusive evidence remains elusive for the multigap topological nature of higher-fold chiral fermions. In this Letter, we leverage a combination of fine-tuned chemical engineering and photoemission spectroscopy with photon energy contrast to discover the higher-fold topology of a chiral crystal. We identify all bulk branches of a higher-fold chiral fermion for the first time, critically important for allowing us to explore unique Fermi arc surface states in multiple interband gaps, which exhibit an emergent ladder structure. Through designer chemical gating of the samples in combination with our measurements, we uncover an unprecedented multigap bulk boundary correspondence. Our demonstration of multigap electronic topology will propel future research on unconventional topological responses.

4.
ACS Nano ; 16(2): 2369-2380, 2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35099945

RESUMO

To realize the quantum anomalous Hall effect (QAHE) at elevated temperatures, the approach of magnetic proximity effect (MPE) was adopted to break the time-reversal symmetry in the topological insulator (Bi0.3Sb0.7)2Te3 (BST) based heterostructures with a ferrimagnetic insulator europium iron garnet (EuIG) of perpendicular magnetic anisotropy. Here we demonstrate large anomalous Hall resistance (RAHE) exceeding 8 Ω (ρAHE of 3.2 µΩ·cm) at 300 K and sustaining to 400 K in 35 BST/EuIG samples, surpassing the past record of 0.28 Ω (ρAHE of 0.14 µΩ·cm) at 300 K. The large RAHE is attributed to an atomically abrupt, Fe-rich interface between BST and EuIG. Importantly, the gate dependence of the AHE loops shows no sign change with varying chemical potential. This observation is supported by our first-principles calculations via applying a gradient Zeeman field plus a contact potential on BST. Our calculations further demonstrate that the AHE in this heterostructure is attributed to the intrinsic Berry curvature. Furthermore, for gate-biased 4 nm BST on EuIG, a pronounced topological Hall effect-like (THE-like) feature coexisting with AHE is observed at the negative top-gate voltage up to 15 K. Interface tuning with theoretical calculations has realized topologically distinct phenomena in tailored magnetic TI-based heterostructures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...