Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Neurosci ; 10(5): 2176-2185, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30664352

RESUMO

Arecoline is a naturally occurring psychoactive alkaloid from areca (betel) nuts of the areca palm ( Areca catechu) endemic to South and Southeast Asia. A partial agonist of nicotinic and muscarinic acetylcholine receptors, arecoline evokes multiple effects on the central nervous system (CNS), including stimulation, alertness, elation, and anxiolysis. Like nicotine, arecoline also evokes addiction and withdrawal symptoms (upon discontinuation). The abuse of areca nuts is widespread, with over 600 million users globally. The importance of arecoline is further supported by its being the world's fourth most commonly used human psychoactive substance (after alcohol, nicotine, and caffeine). Here, we discuss neuropharmacology, pharmacokinetics, and metabolism of arecoline, as well as social and historical aspects of its use and abuse. Paralleling clinical findings, we also evaluate its effects in animal models and outline future clinical and preclinical CNS research in this field.


Assuntos
Arecolina , Transtornos Relacionados ao Uso de Substâncias , Animais , Humanos
2.
Behav Processes ; 158: 200-210, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30468887

RESUMO

Aggression is a common agonistic behavior affecting social life and well-being of humans and animals. However, the underlying mechanisms of aggression remain poorly understood. For decades, studies of aggression have mostly focused on laboratory rodents. The growing importance of evolutionarily relevant, cross-species disease modeling necessitates novel model organisms to study aggression and its pathobiology. The zebrafish (Danio rerio) is rapidly becoming a new experimental model organism in neurobehavioral research. Zebrafish demonstrate high genetic and physiological homology with mammals, fully sequenced genome, ease of husbandry and testing, as well as rich, robust behavioral repertoire. As zebrafish present overt aggressive behaviors, here we focus on their behavioral models and discuss their utility in probing aggression neurobiology and its genetic, pharmacological and environmental modulation. We argue that zebrafish-based models represent an excellent translational tool to understand aggressive behaviors and related pathobiological brain mechanisms.


Assuntos
Agressão/fisiologia , Comportamento Animal/fisiologia , Encéfalo/fisiologia , Peixe-Zebra/fisiologia , Animais
3.
J Neurosci Res ; 97(4): 402-413, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30320468

RESUMO

Currently becoming widely recognized, personalized psychiatry focuses on unique physiological and genetic profiles of patients to best tailor their therapy. However, the role of individual differences, as well as genetic and environmental factors, in human psychiatric disorders remains poorly understood. Animal experimental models are a valuable tool to improve our understanding of disease pathophysiology and its molecular mechanisms. Due to high reproduction capability, fully sequenced genome, easy gene editing, and high genetic and physiological homology with humans, zebrafish (Danio rerio) are emerging as a novel powerful model in biomedicine. Mounting evidence supports zebrafish as a useful model organism in CNS research. Robustly expressed in these fish, individual, strain, and sex differences shape their CNS responses to genetic, environmental, and pharmacological manipulations. Here, we discuss zebrafish as a promising complementary translational tool to further advance patient-centered personalized psychiatry.


Assuntos
Modelos Animais de Doenças , Transtornos Mentais , Medicina de Precisão/tendências , Peixe-Zebra , Animais , Medicina do Comportamento , Sistema Nervoso Central , Feminino , Interação Gene-Ambiente , Individualidade , Masculino , Sexo , Pesquisa Translacional Biomédica
4.
ACS Chem Neurosci ; 10(1): 143-154, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30252437

RESUMO

Hallucinogenic drugs potently alter human behavior and have a millennia-long history of use for medicinal and religious purposes. Interest is rapidly growing in their potential as CNS modulators and therapeutic agents for brain conditions. Antimuscarinic cholinergic drugs, such as atropine and scopolamine, induce characteristic hyperactivity and dream-like hallucinations and form a separate group of hallucinogens known as "deliriants". Although atropine and scopolamine are relatively well-studied drugs in cholinergic physiology, deliriants represent the least-studied class of hallucinogens in terms of their behavioral and neurological phenotypes. As such, novel approaches and new model organisms are needed to investigate the CNS effects of these compounds. Here, we comprehensively evaluate the preclinical effects of deliriant hallucinogens in various animal models, their mechanisms of action, and potential interplay with other signaling pathways. We also parallel experimental and clinical findings on deliriant agents and outline future directions of translational research in this field.


Assuntos
Encéfalo/efeitos dos fármacos , Fármacos do Sistema Nervoso Central/farmacologia , Alucinógenos/farmacologia , Modelos Animais , Antagonistas Muscarínicos/farmacologia , Animais , Encéfalo/metabolismo , Fármacos do Sistema Nervoso Central/toxicidade , Delírio/induzido quimicamente , Delírio/metabolismo , Delírio/psicologia , Alucinógenos/toxicidade , Humanos , Antagonistas Muscarínicos/toxicidade
5.
Behav Brain Res ; 359: 274-280, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366034

RESUMO

Atropine and scopolamine are classical muscarinic cholinergic antagonists that exert multiple CNS effects. Belonging to a group of deliriant hallucinogens, these drugs induce delirium-like hallucinations, hyperactivity, altered affective states and amnesia. However, as deliriants remain the least studied group of hallucinogens, their complex and poorly understood profiles necessitate further clinical and preclinical studies. The zebrafish (Danio rerio) is rapidly emerging as a powerful model organism for translational neuropsychopharmacology research. Here, we characterize acute behavioral effects of atropine (60, 90 and 120 mg/L) and scopolamine (60, 120, 180 and 240 mg/L) in adult zebrafish subjected to the novel tank (NTT), light-dark (LDT) and shoaling tests. Overall, atropine at 90 mg/L only mildly increased the NTT locomotor activity, scopolamine at 120 mg/L produced anxiogenic-like NTT effects without affecting other behaviors, and both drugs similarly disrupted zebrafish group behavior in the shoaling test. Collectively, this supports complex and partially overlapping deliriant-like effects of acute atropine and scopolamine in zebrafish. The behavioral sensitivity to these drugs suggests zebrafish as potential screens for cholinergic deliriant psychotropic agents, also necessitating further cross-species in-vivo experimental studies.


Assuntos
Atropina/farmacologia , Comportamento Animal/efeitos dos fármacos , Alucinógenos/farmacologia , Escopolamina/farmacologia , Peixe-Zebra , Animais , Animais não Endogâmicos , Ansiedade/induzido quimicamente , Relação Dose-Resposta a Droga , Feminino , Masculino , Modelos Animais , Atividade Motora/efeitos dos fármacos , Distribuição Aleatória
6.
Eur J Pharmacol ; 829: 129-140, 2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29627310

RESUMO

Antidepressant drugs are currently one of the most prescribed medications. In addition to treatment resistance and side effects of antidepressants, their clinical use is further complicated by antidepressant discontinuation syndrome (ADS). ADS is a common problem in patients following the interruption, dose reduction, or discontinuation of antidepressant drugs. Clinically, ADS resembles a classical drug withdrawal syndrome, albeit differing from it because antidepressants generally do not induce addiction. The growing clinical importance and prevalence of ADS necessitate novel experimental (animal) models of this disorder. Currently available preclinical models of ADS are mainly rodent-based, and study mostly serotonergic antidepressants and their combinations. Here, we systematically assess clinical ADS symptoms and discuss current trends and challenges in the field of experimental (animal) models of ADS. We also outline basic mechanisms underlying ADS pathobiology, evaluate its genetic, pharmacological and environmental determinants, and emphasize how using animal models may help generate important translational insights into human ADS condition, its prevention and therapy.


Assuntos
Antidepressivos/efeitos adversos , Síndrome de Abstinência a Substâncias/etiologia , Animais , Modelos Animais de Doenças , Humanos
7.
Artigo em Inglês | MEDLINE | ID: mdl-29604314

RESUMO

The endocannabinoid and opioid systems are two interplaying neurotransmitter systems that modulate drug abuse, anxiety, pain, cognition, neurogenesis and immune activity. Although they are involved in such critical functions, our understanding of endocannabinoid and opioid physiology remains limited, necessitating further studies, novel models and new model organisms in this field. Zebrafish (Danio rerio) is rapidly emerging as one of the most effective translational models in neuroscience and biological psychiatry. Due to their high physiological and genetic homology to humans, zebrafish may be effectively used to study the endocannabinoid and opioid systems. Here, we discuss current models used to target the endocannabinoid and opioid systems in zebrafish, and their potential use in future translational research and high-throughput drug screening. Emphasizing the high degree of conservation of the endocannabinoid and opioid systems in zebrafish and mammals, we suggest zebrafish as an excellent model organism to study these systems and to search for the new drugs and therapies targeting their evolutionarily conserved mechanisms.


Assuntos
Sistema Nervoso Central/metabolismo , Endocanabinoides/metabolismo , Modelos Animais , Receptores Opioides/metabolismo , Peixe-Zebra/metabolismo , Animais , Sistema Nervoso Central/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA