Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
MAGMA ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598165

RESUMO

OBJECTIVE: Quantitative susceptibility mapping (QSM) provides an estimate of the magnetic susceptibility of tissue using magnetic resonance (MR) phase measurements. The tissue magnetic susceptibility (source) from the measured magnetic field distribution/local tissue field (effect) inherent in the MR phase images is estimated by numerically solving the inverse source-effect problem. This study aims to develop an effective model-based deep-learning framework to solve the inverse problem of QSM. MATERIALS AND METHODS: This work proposes a Schatten p -norm-driven model-based deep learning framework for QSM with a learnable norm parameter p to adapt to the data. In contrast to other model-based architectures that enforce the l 2 -norm or l 1 -norm for the denoiser, the proposed approach can enforce any p -norm ( 0 < p ≤ 2 ) on a trainable regulariser. RESULTS: The proposed method was compared with deep learning-based approaches, such as QSMnet, and model-based deep learning approaches, such as learned proximal convolutional neural network (LPCNN). Reconstructions performed using 77 imaging volumes with different acquisition protocols and clinical conditions, such as hemorrhage and multiple sclerosis, showed that the proposed approach outperformed existing state-of-the-art methods by a significant margin in terms of quantitative merits. CONCLUSION: The proposed SpiNet-QSM showed a consistent improvement of at least 5% in terms of the high-frequency error norm (HFEN) and normalized root mean squared error (NRMSE) over other QSM reconstruction methods with limited training data.

2.
NMR Biomed ; : e5163, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649140

RESUMO

Quantitative Susceptibility Mapping (QSM) is an advanced magnetic resonance imaging (MRI) technique to quantify the magnetic susceptibility of the tissue under investigation. Deep learning methods have shown promising results in deconvolving the susceptibility distribution from the measured local field obtained from the MR phase. Although existing deep learning based QSM methods can produce high-quality reconstruction, they are highly biased toward training data distribution with less scope for generalizability. This work proposes a hybrid two-step reconstruction approach to improve deep learning based QSM reconstruction. The susceptibility map prediction obtained from the deep learning methods has been refined in the framework developed in this work to ensure consistency with the measured local field. The developed method was validated on existing deep learning and model-based deep learning methods for susceptibility mapping of the brain. The developed method resulted in improved reconstruction for MRI volumes obtained with different acquisition settings, including deep learning models trained on constrained (limited) data settings.

3.
Med Phys ; 51(3): 1944-1956, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37702932

RESUMO

PURPOSE: To propose an automated approach for detecting and classifying Intracranial Hemorrhages (ICH) directly from sinograms using a deep learning framework. This method is proposed to overcome the limitations of the conventional diagnosis by eliminating the time-consuming reconstruction step and minimizing the potential noise and artifacts that can occur during the Computed Tomography (CT) reconstruction process. METHODS: This study proposes a two-stage automated approach for detecting and classifying ICH from sinograms using a deep learning framework. The first stage of the framework is Intensity Transformed Sinogram Sythesizer, which synthesizes sinograms that are equivalent to the intensity-transformed CT images. The second stage comprises of a cascaded Convolutional Neural Network-Recurrent Neural Network (CNN-RNN) model that detects and classifies hemorrhages from the synthesized sinograms. The CNN module extracts high-level features from each input sinogram, while the RNN module provides spatial correlation of the neighborhood regions in the sinograms. The proposed method was evaluated on a publicly available RSNA dataset consisting of a large sample size of 8652 patients. RESULTS: The results showed that the proposed method had a notable improvement as high as 27% in patient-wise accuracies when compared to state-of-the-art methods like ResNext-101, Inception-v3 and Vision Transformer. Furthermore, the sinogram-based approach was found to be more robust to noise and offset errors in comparison to CT image-based approaches. The proposed model was also subjected to a multi-label classification analysis to determine the hemorrhage type from a given sinogram. The learning patterns of the proposed model were also examined for explainability using the activation maps. CONCLUSION: The proposed sinogram-based approach can provide an accurate and efficient diagnosis of ICH without the need for the time-consuming reconstruction step and can potentially overcome the limitations of CT image-based approaches. The results show promising outcomes for the use of sinogram-based approaches in detecting hemorrhages, and further research can explore the potential of this approach in clinical settings.


Assuntos
Aprendizado Profundo , Humanos , Processamento de Imagem Assistida por Computador/métodos , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , Hemorragias Intracranianas/diagnóstico por imagem , Algoritmos
4.
Artigo em Inglês | MEDLINE | ID: mdl-37930930

RESUMO

Segmenting the median nerve is essential for identifying nerve entrapment syndromes, guiding surgical planning and interventions, and furthering understanding of nerve anatomy. This study aims to develop an automated tool that can assist clinicians in localizing and segmenting the median nerve from the wrist, mid-forearm, and elbow in ultrasound videos. This is the first fully automated single deep learning model for accurate segmentation of the median nerve from the wrist to the elbow in ultrasound videos, along with the computation of the cross-sectional area (CSA) of the nerve. The visual transformer architecture, which was originally proposed to detect and classify 41 classes in YouTube videos, was modified to predict the median nerve in every frame of ultrasound videos. This is achieved by modifying the bounding box sequence matching block of the visual transformer. The median nerve segmentation is a binary class prediction, and the entire bipartite matching sequence is eliminated, enabling a direct comparison of the prediction with expert annotation in a frame-by-frame fashion. Model training, validation, and testing were performed on a dataset comprising ultrasound videos collected from 100 subjects, which were partitioned into 80, ten, and ten subjects, respectively. The proposed model was compared with U-Net, U-Net++, Siam U-Net, Attention U-Net, LSTM U-Net, and Trans U-Net. The proposed transformer-based model effectively leveraged the temporal and spatial information present in ultrasound video frames and efficiently segmented the median nerve with an average dice similarity coefficient (DSC) of approximately 94% at the wrist and 84% in the entire forearm region.


Assuntos
Cotovelo , Punho , Humanos , Punho/diagnóstico por imagem , Nervo Mediano/diagnóstico por imagem , Ultrassonografia , Fontes de Energia Elétrica , Processamento de Imagem Assistida por Computador
5.
NMR Biomed ; 37(2): e5055, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37803940

RESUMO

Quantitative susceptibility mapping (QSM) utilizes the relationship between the measured local field and the unknown susceptibility map to perform dipole deconvolution. The aim of this work is to introduce and systematically evaluate the model resolution-based deconvolution for improved estimation of the susceptibility map obtained using the thresholded k-space division (TKD). A two-step approach has been proposed, wherein the first step involves the TKD susceptibility map computation and the second step involves the correction of this susceptibility map using the model-resolution matrix. The TKD-estimated susceptibility map can be expressed as the weighted average of the true susceptibility map, where the weights are determined by the rows of the model-resolution matrix, and hence a deconvolution of the TKD susceptibility map using the model-resolution matrix yields a better approximation to the true susceptibility map. The model resolution-based deconvolution is realized using closed-form, iterative, and sparsity-regularized implementations. The proposed approach was compared with L2 regularization, TKD, rescaled TKD in superfast dipole inversion, the modulated closed-form method, and iterative dipole inversion, as well as sparsity-regularized dipole inversion. It was observed that the proposed approach showed a substantial reduction in the streaking artifacts across 94 test volumes considered in this study. The proposed approach also showed better error reduction and edge preservation compared with other approaches. The proposed model resolution-based deconvolution compensates for the truncation of zero coefficients in the dipole kernel at the magic angle and hence provides a closer approximation to the true susceptibility map compared with other direct methods.


Assuntos
Algoritmos , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Encéfalo , Mapeamento Encefálico/métodos , Processamento de Imagem Assistida por Computador/métodos
6.
IEEE Trans Image Process ; 31: 3479-3493, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35533161

RESUMO

Digital Rock Physics leverages advances in digital image acquisition and analysis techniques to create 3D digital images of rock samples, which are used for computational modeling and simulations to predict petrophysical properties of interest. However, the accuracy of the predictions is crucially dependent on the quality of the digital images, which is currently limited by the resolution of the micro-CT scanning technology. We have proposed a novel Deep Learning based Super-Resolution model called Siamese-SR to digitally boost the resolution of Digital Rock images whilst retaining the texture and providing optimal de-noising. The Siamese-SR model consists of a generator which is adversarially trained with a relativistic and a siamese discriminator utilizing Materials In Context (MINC) loss estimator. This model has been demonstrated to improve the resolution of sandstone rock images acquired using micro-CT scanning by a factor of 2. Another key highlight of our work is that for the evaluation of the super-resolution performance, we propose to move away from image-based metrics such as Structural Similarity (SSIM) and Peak Signal to Noise Ratio (PSNR) because they do not correlate well with expert geological and petrophysical evaluations. Instead, we propose to subject the super-resolved images to the next step in the Digital Rock workflow to calculate a crucial petrophysical property of interest, viz. porosity and use it as a metric for evaluation of our proposed Siamese-SR model against several other existing super-resolution methods like SRGAN, ESRGAN, EDSR and SPSR. Furthermore, we also use Local Attribution Maps to show how our proposed Siamese-SR model focuses optimally on edge-semantics, which is what leads to improvement in the image-based porosity prediction, the permeability prediction from Multiple Relaxation Time Lattice Boltzmann Method (MRTLBM) flow simulations as well as the prediction of other petrophysical properties of interest derived from Mercury Injection Capillary Pressure (MICP) simulations.

7.
Sci Rep ; 11(1): 18536, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535710

RESUMO

Digital rock is an emerging area of rock physics, which involves scanning reservoir rocks using X-ray micro computed tomography (XCT) scanners and using it for various petrophysical computations and evaluations. The acquired micro CT projections are used to reconstruct the X-ray attenuation maps of the rock. The image reconstruction problem can be solved by utilization of analytical (such as Feldkamp-Davis-Kress (FDK) algorithm) or iterative methods. Analytical schemes are typically computationally more efficient and hence preferred for large datasets such as digital rocks. Iterative schemes like maximum likelihood expectation maximization (MLEM) are known to generate accurate image representation over analytical scheme in limited data (and/or noisy) situations, however iterative schemes are computationally expensive. In this work, we have parallelized the forward and inverse operators used in the MLEM algorithm on multiple graphics processing units (multi-GPU) platforms. The multi-GPU implementation involves dividing the rock volumes and detector geometry into smaller modules (along with overlap regions). Each of the module was passed onto different GPU to enable computation of forward and inverse operations. We observed an acceleration of [Formula: see text] times using our multi-GPU approach compared to the multi-core CPU implementation. Further multi-GPU based MLEM obtained superior reconstruction compared to traditional FDK algorithm.

8.
J Biomed Opt ; 26(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34405599

RESUMO

SIGNIFICANCE: The proposed binary tomography approach was able to recover the vasculature structures accurately, which could potentially enable the utilization of binary tomography algorithm in scenarios such as therapy monitoring and hemorrhage detection in different organs. AIM: Photoacoustic tomography (PAT) involves reconstruction of vascular networks having direct implications in cancer research, cardiovascular studies, and neuroimaging. Various methods have been proposed for recovering vascular networks in photoacoustic imaging; however, most methods are two-step (image reconstruction and image segmentation) in nature. We propose a binary PAT approach wherein direct reconstruction of vascular network from the acquired photoacoustic sinogram data is plausible. APPROACH: Binary tomography approach relies on solving a dual-optimization problem to reconstruct images with every pixel resulting in a binary outcome (i.e., either background or the absorber). Further, the binary tomography approach was compared against backprojection, Tikhonov regularization, and sparse recovery-based schemes. RESULTS: Numerical simulations, physical phantom experiment, and in-vivo rat brain vasculature data were used to compare the performance of different algorithms. The results indicate that the binary tomography approach improved the vasculature recovery by 10% using in-silico data with respect to the Dice similarity coefficient against the other reconstruction methods. CONCLUSION: The proposed algorithm demonstrates superior vasculature recovery with limited data both visually and based on quantitative image metrics.


Assuntos
Processamento de Imagem Assistida por Computador , Técnicas Fotoacústicas , Algoritmos , Animais , Imagens de Fantasmas , Ratos , Tomografia
9.
Biomed Opt Express ; 12(3): 1320-1338, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33796356

RESUMO

The reconstruction methods for solving the ill-posed inverse problem of photoacoustic tomography with limited noisy data are iterative in nature to provide accurate solutions. These methods performance is highly affected by the noise level in the photoacoustic data. A singular value decomposition (SVD) based plug and play priors method for solving photoacoustic inverse problem was proposed in this work to provide robustness to noise in the data. The method was shown to be superior as compared to total variation regularization, basis pursuit deconvolution and Lanczos Tikhonov based regularization and provided improved performance in case of noisy data. The numerical and experimental cases show that the improvement can be as high as 8.1 dB in signal to noise ratio of the reconstructed image and 67.98% in root mean square error in comparison to the state of the art methods.

10.
Artigo em Inglês | MEDLINE | ID: mdl-33755565

RESUMO

Lung ultrasound (US) imaging has the potential to be an effective point-of-care test for detection of COVID-19, due to its ease of operation with minimal personal protection equipment along with easy disinfection. The current state-of-the-art deep learning models for detection of COVID-19 are heavy models that may not be easy to deploy in commonly utilized mobile platforms in point-of-care testing. In this work, we develop a lightweight mobile friendly efficient deep learning model for detection of COVID-19 using lung US images. Three different classes including COVID-19, pneumonia, and healthy were included in this task. The developed network, named as Mini-COVIDNet, was bench-marked with other lightweight neural network models along with state-of-the-art heavy model. It was shown that the proposed network can achieve the highest accuracy of 83.2% and requires a training time of only 24 min. The proposed Mini-COVIDNet has 4.39 times less number of parameters in the network compared to its next best performing network and requires a memory of only 51.29 MB, making the point-of-care detection of COVID-19 using lung US imaging plausible on a mobile platform. Deployment of these lightweight networks on embedded platforms shows that the proposed Mini-COVIDNet is highly versatile and provides optimal performance in terms of being accurate as well as having latency in the same order as other lightweight networks. The developed lightweight models are available at https://github.com/navchetan-awasthi/Mini-COVIDNet.


Assuntos
COVID-19/diagnóstico por imagem , Aprendizado Profundo , Interpretação de Imagem Assistida por Computador/métodos , Sistemas Automatizados de Assistência Junto ao Leito , Ultrassonografia/métodos , Humanos , SARS-CoV-2
11.
IEEE Trans Neural Netw Learn Syst ; 32(3): 932-946, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33544680

RESUMO

Chest computed tomography (CT) imaging has become indispensable for staging and managing coronavirus disease 2019 (COVID-19), and current evaluation of anomalies/abnormalities associated with COVID-19 has been performed majorly by the visual score. The development of automated methods for quantifying COVID-19 abnormalities in these CT images is invaluable to clinicians. The hallmark of COVID-19 in chest CT images is the presence of ground-glass opacities in the lung region, which are tedious to segment manually. We propose anamorphic depth embedding-based lightweight CNN, called Anam-Net, to segment anomalies in COVID-19 chest CT images. The proposed Anam-Net has 7.8 times fewer parameters compared to the state-of-the-art UNet (or its variants), making it lightweight capable of providing inferences in mobile or resource constraint (point-of-care) platforms. The results from chest CT images (test cases) across different experiments showed that the proposed method could provide good Dice similarity scores for abnormal and normal regions in the lung. We have benchmarked Anam-Net with other state-of-the-art architectures, such as ENet, LEDNet, UNet++, SegNet, Attention UNet, and DeepLabV3+. The proposed Anam-Net was also deployed on embedded systems, such as Raspberry Pi 4, NVIDIA Jetson Xavier, and mobile-based Android application (CovSeg) embedded with Anam-Net to demonstrate its suitability for point-of-care platforms. The generated codes, models, and the mobile application are available for enthusiastic users at https://github.com/NaveenPaluru/Segmentation-COVID-19.


Assuntos
COVID-19/diagnóstico por imagem , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Pulmão/diagnóstico por imagem , Redes Neurais de Computação , Tomografia Computadorizada por Raios X/métodos , COVID-19/epidemiologia , Humanos
12.
J Biophotonics ; 14(1): e202000191, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33025761

RESUMO

Photoacoustic/Optoacoustic tomography aims to reconstruct maps of the initial pressure rise induced by the absorption of light pulses in tissue. This reconstruction is an ill-conditioned and under-determined problem, when the data acquisition protocol involves limited detection positions. The aim of the work is to develop an inversion method which integrates denoising procedure within the iterative model-based reconstruction to improve quantitative performance of optoacoustic imaging. Among the model-based schemes, total-variation (TV) constrained reconstruction scheme is a popular approach. In this work, a two-step approach was proposed for improving the TV constrained optoacoustic inversion by adding a non-local means based filtering step within each TV iteration. Compared to TV-based reconstruction, inclusion of this non-local means step resulted in signal-to-noise ratio improvement of 2.5 dB in the reconstructed optoacoustic images.


Assuntos
Processamento de Imagem Assistida por Computador , Técnicas Fotoacústicas , Algoritmos , Imagens de Fantasmas , Razão Sinal-Ruído , Tomografia Computadorizada por Raios X
13.
J Biophotonics ; 13(11): e202000123, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33245636

RESUMO

Low-cost automated histopathology microscopy systems usually suffer from optical imperfections, producing images that are slightly Out of Focus (OoF). In this work, a guided filter (GF) based image preprocessing is proposed for compensating focal errors and its efficacy is demonstrated on images of healthy and malaria infected red blood cells (h-RBCs and i-RBCs), and PAP smears. Since contrast enhancement has been widely used as an image preprocessing step for the analysis of histopathology images, a systematic comparison is made with six such prominently used methods, namely Contrast Limited Adaptive Histogram Equalization (CLAHE), RIQMC-based optimal histogram matching (ROHIM), modified L0, Morphological Varying(MV)-Bitonic filter, unsharp mask filter and joint bilateral filter. The images enhanced using GF approach lead to better segmentation accuracy (upto 50% improvement over native images) and visual quality compared to other approaches, without any change in the color tones. Thus, the proposed GF approach is a viable solution for rectifying the OoF microscopy images without the loss of the valuable diagnostic information presented by the color tone.


Assuntos
Algoritmos , Aumento da Imagem , Feminino , Humanos
14.
Med Phys ; 47(10): 4838-4861, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32780871

RESUMO

PURPOSE: To compare the performance of iterative direct and indirect parametric reconstruction methods with indirect deep learning-based reconstruction methods in estimating tracer-kinetic parameters from highly undersampled DCE-MR Imaging breast data and provide a systematic comparison of the same. METHODS: Estimation of tracer-kinetic parameters using indirect methods from undersampled data requires to reconstruct the anatomical images initially by solving an inverse problem. This reconstructed images gets utilized in turn to estimate the tracer-kinetic parameters. In direct estimation, the parameters are estimated without reconstructing the anatomical images. Both problems are ill-posed and are typically solved using prior-based regularization or using deep learning. In this study, for indirect estimation, two deep learning-based reconstruction frameworks namely, ISTA-Net+ and MODL, were utilized. For direct and indirect parametric estimation, sparsity inducing priors (L1 and Total-Variation) and limited memory Broyden-Fletcher-Goldfarb-Shanno algorithm as solver was deployed. The performance of these techniques were compared systematically in estimation of vascular permeability ( K trans ) from undersampled DCE-MRI breast data using Patlak as pharmaco-kinetic model. The experiments involved retrospective undersampling of the data 20×, 50×, and 100× and compared the results using PSNR, nRMSE, SSIM, and Xydeas metrics. The K trans maps estimated from fully sampled data were utilized as ground truth. The developed code was made available as https://github.com/Medical-Imaging-Group/DCE-MRI-Compare open-source for enthusiastic users. RESULTS: The reconstruction methods performance was evaluated using ten patients breast data (five patients each for training and testing). Consistent with other studies, the results indicate that direct parametric reconstruction methods provide improved performance compared to the indirect parameteric reconstruction methods. The results also indicate that for 20× undersampling, deep learning-based methods performs better or at par with direct estimation in terms of PSNR, SSIM, and nRMSE. However, for higher undersampling rates (50× and 100×) direct estimation performs better in all metrics. For all undersampling rates, direct reconstruction performed better in terms of Xydeas metric, which indicated fidelity in magnitude and orientation of edges. CONCLUSION: Deep learning-based indirect techniques perform at par with direct estimation techniques for lower undersampling rates in the breast DCE-MR imaging. At higher undersampling rates, they are not able to provide much needed generalization. Direct estimation techniques are able to provide more accurate results than both deep learning- and parametric-based indirect methods in these high undersampling scenarios.


Assuntos
Aprendizado Profundo , Algoritmos , Humanos , Processamento de Imagem Assistida por Computador , Cinética , Imageamento por Ressonância Magnética , Estudos Retrospectivos
15.
Artigo em Inglês | MEDLINE | ID: mdl-32142429

RESUMO

Photoacoustic tomography (PAT) is a noninvasive imaging modality combining the benefits of optical contrast at ultrasonic resolution. Analytical reconstruction algorithms for photoacoustic (PA) signals require a large number of data points for accurate image reconstruction. However, in practical scenarios, data are collected using the limited number of transducers along with data being often corrupted with noise resulting in only qualitative images. Furthermore, the collected boundary data are band-limited due to limited bandwidth (BW) of the transducer, making the PA imaging with limited data being qualitative. In this work, a deep neural network-based model with loss function being scaled root-mean-squared error was proposed for super-resolution, denoising, as well as BW enhancement of the PA signals collected at the boundary of the domain. The proposed network has been compared with traditional as well as other popular deep-learning methods in numerical as well as experimental cases and is shown to improve the collected boundary data, in turn, providing superior quality reconstructed PA image. The improvement obtained in the Pearson correlation, structural similarity index metric, and root-mean-square error was as high as 35.62%, 33.81%, and 41.07%, respectively, for phantom cases and signal-to-noise ratio improvement in the reconstructed PA images was as high as 11.65 dB for in vivo cases compared with reconstructed image obtained using original limited BW data. Code is available at https://sites.google.com/site/sercmig/home/dnnpat.


Assuntos
Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas/métodos , Tomografia/métodos , Imagens de Fantasmas , Transdutores
16.
Biomed Opt Express ; 10(5): 2227-2243, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31149371

RESUMO

The methods available for solving the inverse problem of photoacoustic tomography promote only one feature-either being smooth or sharp-in the resultant image. The fusion of photoacoustic images reconstructed from distinct methods improves the individually reconstructed images, with the guided filter based approach being state-of-the-art, which requires that implicit regularization parameters are chosen. In this work, a deep fusion method based on convolutional neural networks has been proposed as an alternative to the guided filter based approach. It has the combined benefit of using less data for training without the need for the careful choice of any parameters and is a fully data-driven approach. The proposed deep fusion approach outperformed the contemporary fusion method, which was proved using experimental, numerical phantoms and in-vivo studies. The improvement obtained in the reconstructed images was as high as 95.49% in root mean square error and 7.77 dB in signal to noise ratio (SNR) in comparison to the guided filter approach. Also, it was demonstrated that the proposed deep fuse approach, trained on only blood vessel type images at measurement data SNR being 40 dB, was able to provide a generalization that can work across various noise levels in the measurement data, experimental set-ups as well as imaging objects.

17.
IEEE Trans Med Imaging ; 38(8): 1935-1947, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30582534

RESUMO

Photoacoustic tomography involves reconstructing the initial pressure rise distribution from the measured acoustic boundary data. The recovery of the initial pressure rise distribution tends to be an ill-posed problem in the presence of noise and when limited independent data is available, necessitating regularization. The standard regularization schemes include Tikhonov, l1 -norm, and total-variation. These regularization schemes weigh the singular values equally irrespective of the noise level present in the data. This paper introduces a fractional framework to weigh the singular values with respect to a fractional power. This fractional framework was implemented for Tikhonov, l1 -norm, and total-variation regularization schemes. Moreover, an automated method for choosing the fractional power was also proposed. It was shown theoretically and with numerical experiments that the fractional power is inversely related to the data noise level for fractional Tikhonov scheme. The fractional framework outperforms the standard regularization schemes, Tikhonov, l1 -norm, and total-variation by 54% in numerical simulations, experimental phantoms, and in vivo rat data in terms of observed contrast/signal-to-noise-ratio of the reconstructed images.


Assuntos
Técnicas Fotoacústicas/métodos , Tomografia/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Ratos
18.
J Biomed Opt ; 23(10): 1-4, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30362308

RESUMO

Photoacoustic tomography tends to be an ill-conditioned problem with noisy limited data requiring imposition of regularization constraints, such as standard Tikhonov (ST) or total variation (TV), to reconstruct meaningful initial pressure rise distribution from the tomographic acoustic measurements acquired at the boundary of the tissue. However, these regularization schemes do not account for nonuniform sensitivity arising due to limited detector placement at the boundary of tissue as well as other system parameters. For the first time, two regularization schemes were developed within the Tikhonov framework to address these issues in photoacoustic imaging. The model resolution, based on spatially varying regularization, and fidelity-embedded regularization, based on orthogonality between the columns of system matrix, were introduced. These were systematically evaluated with the help of numerical and in-vivo mice data. It was shown that the performance of the proposed spatially varying regularization schemes were superior (with at least 2 dB or 1.58 times improvement in the signal-to-noise ratio) compared to ST-/TV-based regularization schemes.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas/métodos , Tomografia/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Modelos Lineares , Camundongos , Imagens de Fantasmas
19.
J Biomed Opt ; 23(9): 1-22, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29943527

RESUMO

Several algorithms exist to solve the photoacoustic image reconstruction problem depending on the expected reconstructed image features. These reconstruction algorithms promote typically one feature, such as being smooth or sharp, in the output image. Combining these features using a guided filtering approach was attempted in this work, which requires an input and guiding image. This approach act as a postprocessing step to improve commonly used Tikhonov or total variational regularization method. The result obtained from linear backprojection was used as a guiding image to improve these results. Using both numerical and experimental phantom cases, it was shown that the proposed guided filtering approach was able to improve (as high as 11.23 dB) the signal-to-noise ratio of the reconstructed images with the added advantage being computationally efficient. This approach was compared with state-of-the-art basis pursuit deconvolution as well as standard denoising methods and shown to outperform them.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Técnicas Fotoacústicas/métodos , Tomografia/métodos , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Feminino , Imagens de Fantasmas , Ratos , Processamento de Sinais Assistido por Computador , Razão Sinal-Ruído
20.
Med Phys ; 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29856489

RESUMO

PURPOSE: Development of simple and computationally efficient extrapolated Tikhonov filtering reconstruction methods for photoacoustic tomography. METHODS: The model-based reconstruction algorithms in photoacoustic tomography typically utilize Tikhonov regularization scheme for the reconstruction of initial pressure distribution from the measured boundary acoustic data. The automated choice of regularization parameter in these cases is computationally expensive. Moreover, the Tikhonov scheme promotes the smooth features in the reconstructed image due to the smooth regularizer, thus leading to loss of sharp features. The proposed extrapolation method estimates the solution at zero regularization assuming the solution being a function of regularization parameter and thus posing it as a zero value problem. Thus, the numerically computed zero regularization solution is expected to have better features compared to standard Tikhonov solution, with an added advantage of removing the necessity of automated choice of regularization. The reconstructed results using this method were shown in three variants (Lanczos, traditional, and exponential) of Tikhonov filtering and were compared with the standard error estimate technique. RESULTS: Four numerical (including realistic breast phantom) and two experimental phantom data were utilized to show the effectiveness of the proposed method. It was shown that the proposed method performance was superior than the standard error estimate technique, being at least four times faster in terms of computation, and provides an improvement as high as 2.6 times in terms of standard figures of merit. CONCLUSION: The developed extrapolated Tikhonov filtering methods overcome the difficulty of obtaining a suitable regularization parameter and shown to be reconstructing high-quality photoacoustic images with additional advantage of being computationally efficient, making it more appealing in real-time applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...