Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Eur J Biochem ; 267(14): 4434-44, 2000 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10880967

RESUMO

The gene for the electron-transfer protein flavodoxin has been cloned from Megasphaera elsdenii using the polymerase chain reaction. The recombinant gene was sequenced, expressed in an Escherichia coli expression system, and the recombinant protein purified and characterized. With the exception of an additional methionine residue at the N-terminus, the physico-chemical properties of the protein, including its optical spectrum and oxidation-reduction properties, are very similar to those of native flavodoxin. A site-directed mutant, E60Q, was made to investigate the effects of removing the negatively charged group that is nearest to N(1) of the bound FMN. The absorbance maximum in the visible region of the bound flavin moves from 446 to 453 nm. The midpoint oxidation-reduction potential at pH 7 for reduction of oxidized flavodoxin to the semiquinone E2 becomes more negative, decreasing from -114 to -242 mV; E1, the potential for reduction of semiquinone to the hydroquinone, becomes less negative, increasing from -373 mV to -271 mV. A redox-linked pKa associated with the hydroquinone is decreased from 5.8 to < or = 4.3. The spectra of the hydroquinones of wild-type and mutant proteins depend on pH (apparent pKa values of 5.8 and < or = 5.2, respectively). The complexes of apoprotein and all three redox forms of FMN are much weaker for the mutant, with the greatest effect occurring when the flavin is in the semiquinone form. These results suggest that glutamate 60 plays a major role in control of the redox properties of M. elsdenii flavodoxin, and they provide experimental support to an earlier proposal that the carboxylate on its side-chain is associated with the redox-linked pKa of 5.8 in the hydroquinone.


Assuntos
Bacillaceae/genética , Bacillaceae/metabolismo , Flavodoxina/biossíntese , Flavodoxina/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Eletroforese em Gel de Poliacrilamida , Escherichia coli/metabolismo , Flavodoxina/química , Flavodoxina/isolamento & purificação , Ácido Glutâmico/metabolismo , Concentração de Íons de Hidrogênio , Hidroquinonas/química , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Ligação Proteica , Proteínas Recombinantes/metabolismo , Análise de Sequência de DNA , Temperatura , Termodinâmica
2.
Biochemistry ; 38(12): 3753-62, 1999 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-10090764

RESUMO

Photoreduction with a 5-deazaflavin as the catalyst was used to convert flavodoxins from Desulfovibrio vulgaris, Megasphaera elsdenii, Anabaena PCC 7119, and Azotobacter vinelandii to their hydroquinone forms. The optical spectra of the fully reduced flavodoxins were found to vary with pH in the pH range of 5.0-8.5. The changes correspond to apparent pKa values of 6.5 and 5.8 for flavodoxins from D. vulgaris and M. elsdenii, respectively, values that are similar to the apparent pKa values reported earlier from the effects of pH on the redox potential for the semiquinone-hydroquinone couples of these two proteins (7 and 5.8, respectively). The changes in the spectra resemble those occurring with the free two-electron-reduced flavin for which the pKa is 6.7, but they are red-shifted compared with those of the free flavin. The optical changes occurring with flavodoxins from D. vulgaris and A. vinelandii flavodoxins are larger than those of free reduced FMN. The absorbance of the free and bound flavin increases in the region of 370-390 nm (Delta epsilon = 1-1.8 mM-1 cm-1) with increases of pH. Qualitatively similar pH-dependent changes occur when FMN in D. vulgaris flavodoxin is replaced by iso-FMN, and in the following mutants of D. vulgaris flavodoxin in which the residues mutated are close to the isoalloxazine of the bound flavin: D95A, D95E, D95A/D127A, W60A, Y98S, W60M/Y98W, S96R, and G61A. The 13C NMR spectrum of reduced D. vulgaris [2,4a-13C2]FMN flavodoxin shows two peaks. The peak due to C(4a) is unaffected by pH, but the peak due to C(2) broadens with decreasing pH; the apparent pKa for the change is 6.2. It is concluded that a decrease in pH induces a change in the electronic structure of the reduced flavin due to a change in the ionization state of the flavin, a change in the polarization of the flavin environment, a change in the hydrogen-bonding network around the flavin, and/or possibly a change in the bend along the N(5)-N(10) axis of the flavin. A change in the ionization state of the flavin is the simplest explanation, with the site of protonation differing from that of free FMNH-. The pH effect is unlikely to result from protonation of D95 or D127, the negatively charged amino acids closest to the flavin of D. vulgaris flavodoxin, because the optical changes observed with alanine mutants at these positions are similar to those occurring with the wild-type protein.


Assuntos
Mononucleotídeo de Flavina/química , Flavodoxina/química , Hidroquinonas/química , Apoproteínas/química , Desulfovibrio vulgaris/química , Mononucleotídeo de Flavina/metabolismo , Flavodoxina/genética , Flavodoxina/metabolismo , Concentração de Íons de Hidrogênio , Hidroquinonas/metabolismo , Espectroscopia de Ressonância Magnética , Mutação , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...