Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 307(5): 1943-1959, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37750449

RESUMO

The cerebellar, ocular, craniofacial, and genital (COFG) syndrome is a human genetic disease that is caused by MAB21L1 mutations. A COFG mouse model with Mab21l1-null mutation causes severe microphthalmia and fontanelle dysosteogenesis, similar to the symptoms in human patients. One of the typical symptoms is scrotal agenesis in male infants, while male Mab21l1-null mice show hypoplastic preputial glands, a rodent-specific derivative of the cranial scrotal fold. However, it is still unclear where and how MAB21Ll acts in the external genitalia in both mice and humans. Here we show that, at the neonatal stage, MAB21L1 expression in the external genitalia was restricted to two mesenchymal cell populations-underneath the scrotal and labial skin and around the preputial and clitoral glands (PG/CG). Morphometric analyses of the Mab21l1-/- pups revealed a significant reduction in the external size of the scrotum, vulva, and CG, as well as PG. In the periglandular region around PG and CG, the periglandular mesenchymal cells showed a drastic reduction in both cell density and immunoreactive signals for several extracellular matrix proteins (e.g., collagen I, fibronectin, and proteoglycans), together with their reduced Ki67-positive cell proliferation index. In the Mab21l1-/- PG/CG, together with reduced vascularization, the glandular epithelia displayed atrophy with discontinuous basal lamina along the basal surface and defective glycogen accumulation in their cytoplasm. Under a 5-day organ culture of the isolated PG, the Mab21l1-/- explants showed poor outgrowth and retention of the glandular structure in vitro. However, the addition of exogenous Matrigel could partially rescue such tissue-autonomous phenotypes, showing glandular morphology similar to that of the wild-type explants. These findings suggest that MAB21L1+ mesenchymal cells play a crucial role in providing nutrient ECM support for glandular outgrowth and morphogenesis in the peripheral external genitalia.


Assuntos
Genitália , Animais , Feminino , Masculino , Camundongos , Proteínas de Homeodomínio/genética , Camundongos Knockout , Mutação , Fenótipo , Vulva
2.
RSC Adv ; 13(46): 32143-32149, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37928845

RESUMO

A homogeneous structural distribution in metal nanoparticle is commonly required for their application, and despite high-yield growth techniques, unavoidable structural heterogeneity remains a concern in metal nanoparticle synthesis. Gold nanotriangles (AuNTs) were synthesized using seed-mediated and seedless growth methods. Recent advancements in high-yield synthesis processes have enabled easy handling of AuNTs, which exhibit unique localized surface plasmon resonance characteristics due to their anisotropic triangular form. The flocculation and subsequent precipitation technique was used to purify AuNTs of different sizes synthesized using seed-mediated and seedless growth methods. The optimal conditions for obtaining high-purity AuNTs were explored by introducing a high concentration of cetyltrimethylammonium chloride. Additionally, the depletion force necessary for achieving high-purity AuNTs was calculated to reveal variations in the required depletion forces for AuNTs synthesized using different growth techniques. The alternations in the size distribution of AuNTs during the flocculation step were tracked using dynamic light scattering, and the surface charge of AuNTs synthesized through different growth methods was evaluated by ζ-potential. The high purity of the AuNTs produced using the seedless growth method required a larger depletion force than the seed-mediated grown AuNTs. The difference in the required depletion forces results from the difference in the electrostatic forces caused by the different growth methods.

3.
Nanoscale Adv ; 5(21): 5780-5785, 2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-37881711

RESUMO

The low collision rate and contact time of gold nanoparticles (NPs) in solution afford a low welding probability, which hinders their welding structure, orientation, and dimension. Encapsulated anisotropic NPs, gold nanotriangles (AuNTs), were successfully assembled into a three-dimensional structure inside a permeable silica nanocapsule under light illumination to generate localized surface plasmon resonance (LSPR). AuNTs were trapped in the permeable silica nanocapsules and diffused in the nanospace because of copolymer release, which increased the contact probability of AuNTs and promoted the three-dimensional building of AuNTs. Electron energy loss mapping simulations revealed that the obtained three-dimensional AuNT structure exhibited spatially separated multiple LSPR modes with different energies of incident light, which are photophysically attractive beyond the facet-selective chemical growth of NPs, and postmodification for anchoring substances with site-selective attachment to the obtained structure will be applicable to expand the sensing design and class of substances for sensing.

4.
Dis Model Mech ; 14(12)2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34779479

RESUMO

Mutations in human MAB21L1 cause aberrations in lens ectoderm morphogenesis and lead to congenital cerebellar, ocular, craniofacial and genital (COFG) syndrome. Murine Mab21l1-null mutations cause severe cell-autonomous defects in lens formation, leading to microphthalmia; therefore, Mab21l1-null mice are used as a mouse model for COFG syndrome. In this study, we investigated the early-onset single-cell-level phenotypes of murine Mab21l1-null lens ectoderms using electron microscopy and single-cell RNA sequencing (scRNA-seq). Electron microscopy and immunohistochemical analyses indicated endoplasmic reticulum stress at the 24- to 26-somite stage in Mab21l1-null lens placodes. scRNA-seq analysis revealed that 131 genes were downregulated and 148 were upregulated in Mab21l1-null lens ectoderms relative to the wild type. We successfully identified 21 lens-specific genes that were downregulated in Mab21l1-null cells, including three key genes involved in lens formation: Pitx3, Maf and Sfrp2. Moreover, gene ontology analysis of the 279 differentially expressed genes indicated enrichment in housekeeping genes associated with DNA/nucleotide metabolism prior to cell death. These findings suggest that MAB21L1 acts as a nuclear factor that modulates not only lens-specific gene expression but also DNA/nucleotide metabolic processes during lens placode formation.


Assuntos
Proteínas de Homeodomínio , Cristalino , Animais , Ectoderma/metabolismo , Expressão Gênica , Proteínas de Homeodomínio/genética , Cristalino/metabolismo , Camundongos , Camundongos Knockout
5.
Biochem Biophys Res Commun ; 543: 80-86, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33548738

RESUMO

The optic vesicle in the developing embryonic eye contains a multitude of neuroepithelial progenitors that subsequently differentiate into functionally distinct domains of the optic cup, such as the neural retina, pigment epithelium, and optic stalk. To investigate cell-type diversity across early optic vesicles before regionalization of the optic cup, we performed single-cell RNA-sequencing (scRNA-seq) using 7989 cells from the presumptive eye area in mouse embryos at the 12-26-somite stages at five developmental time points. We demonstrated the presence of seven optic vesicle populations. Moreover, the four populations of retinal progenitor cells could be classified according to their stage-dependent time point, and these cells exhibited altered expression of several structural and metabolic key genes, such as Col9a1 and Ckb, just before regionalization of the optic cup. From these data, we provide the first report on stage-dependent transcriptional profiles during initial retinal specification at single-cell resolution and highlight the unexpected developmental heterogeneity of the murine optic vesicle structure.


Assuntos
Embrião não Mamífero/metabolismo , Olho/crescimento & desenvolvimento , Olho/metabolismo , Retina/metabolismo , Análise de Célula Única/métodos , Células-Tronco/metabolismo , Animais , Feminino , Camundongos , Camundongos Endogâmicos ICR , Retina/citologia , Transdução de Sinais , Células-Tronco/citologia , Transcriptoma
6.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289176

RESUMO

Microbes can extend Drosophila melanogaster life span by contributing to the nutritional value of malnourishing fly culture medium. The beneficial effect of microbes during malnutrition is dependent on their individual ability to proliferate in the fly environment and is mimicked by lifelong supplementation of equivalent levels of heat-killed microbes or dietary protein, suggesting that microbes can serve directly as a protein-rich food source. Here, we use nutritionally rich fly culture medium to demonstrate how changes in dietary composition influence monocolonized fly life span; microbes that extend fly life span on malnourishing diets can shorten life on rich diets. The mechanisms employed by microbes to affect host health likely differ on low- or high-nutrient diets. Our results demonstrate how Drosophila-associated microbes can positively or negatively influence fly life span depending on the nutritional environment. Although controlled laboratory environments allow focused investigations on the interaction between fly microbiota and nutrition, the relevance of these studies is not straightforward, because it is difficult to mimic the nutritional ecology of natural Drosophila-microbe interactions. As such, caution is needed in designing and interpreting fly-microbe experiments and before categorizing microbes into specific symbiotic roles based on results obtained from experiments testing limited conditions.IMPORTANCED. melanogaster ingests microorganisms growing within its rotting vegetation diet. Some of these microbes form associations with flies, while others pass through the gut with meals. Fly-microbe-diet interactions are dynamic, and changes to the fly culture medium can influence microbial growth in the overall environment. In turn, these alterations in microbial growth may not only impact the nutritional value of fly meals but also modulate behavior and health, at least in part due to direct contributions to fly nutrition. The interactive ecology between flies, microbes, and their environment can cause a specific microbe to be either beneficial or detrimental to fly life span, indicating that the environment should be considered a key influential factor in host-microbe interactions.


Assuntos
Drosophila melanogaster/microbiologia , Interações entre Hospedeiro e Microrganismos , Longevidade , Microbiota , Nutrientes , Fenômenos Fisiológicos da Nutrição Animal , Animais , Drosophila melanogaster/metabolismo , Simbiose
7.
iScience ; 4: 247-259, 2018 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-30240744

RESUMO

In Drosophila, microbial association can promote development or extend life. We tested the impact of microbial association during malnutrition and show that microbial quantity is a predictor of fly longevity. Although all tested microbes, when abundantly provided, can rescue lifespan on low-protein diet, the effect of a single inoculation seems linked to the ability of that microbial strain to thrive under experimental conditions. Microbes, dead or alive, phenocopy dietary protein, and the calculated dependence on microbial protein content is similar to the protein requirements determined from fly feeding studies, suggesting that microbes enhance host protein nutrition by serving as protein-rich food. Microbes that enhance larval growth are also associated with the ability to better thrive on fly culture medium. Our results suggest an unanticipated range of microbial species that promote fly development and longevity and highlight microbial quantity as an important determinant of effects on physiology and lifespan during undernutrition.

9.
Differentiation ; 98: 70-78, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29156428

RESUMO

The Mab-21 gene family is crucial for animal development. A deficiency in the Mab-21 genes associates with several defects, including skeletal malformation in mice and humans. In this study, we observed that mice lacking Mab21l1 displayed an unclosed fontanelle, suggesting impaired calvarial bone development. Cells isolated from the calvaria of these mice showed a greater osteoblast differentiation potential as evidenced by the abundance of mineralized bone nodules and higher expression levels of osteogenic markers than wild-type cells. Mab21l1-/- osteoblasts also expressed higher levels of adipocyte genes and interferon-regulated genes at early stages of osteogenesis. Rankl/Opg expression levels were also higher in Mab21l1-/- osteoblasts than in wild-type cells. These data suggest that Mab21l1 is involved in either the regulation of mesenchymal cell proliferation and differentiation or the balance between bone formation and resorption. An alteration in these regulatory machineries, therefore, may lead to insufficient bone formation, causing the bone phenotype in Mab21l1-/- mice.


Assuntos
Proteínas de Homeodomínio/genética , Osteoblastos/citologia , Osteogênese/genética , Adipócitos/citologia , Animais , Diferenciação Celular/genética , Células Cultivadas , Humanos , Camundongos Transgênicos , Fenótipo
10.
Sleep ; 40(11)2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29029291

RESUMO

Study objectives: Plant-derived caffeine is regarded as a defensive compound produced to prevent herbivory. Caffeine is generally repellent to insects and often used to study the neurological basis for aversive responses in the model insect, Drosophila melanogaster. Caffeine is also studied for its stimulatory properties where sleep or drowsiness is suppressed across a range of species. Since limiting access to food also inhibits fly sleep-an effect known as starvation-induced sleep suppression-we tested whether aversion to caffeinated food results in reduced nutrient intake and assessed how this might influence fly studies on the stimulatory effects of caffeine. Methods: We measured sleep and total consumption during the first 24 hours of exposure to caffeinated diets containing a range of sucrose concentrations to determine the relative influence of caffeine and nutrient ingestion on sleep. Experiments were replicated using three fly strains. Results: Caffeine reduced total consumption and nighttime sleep, but only at intermediate sucrose concentrations. Although sleep can be modeled by an exponential dose response to nutrient intake, caffeine-mediated sleep loss cannot be explained by absolute caffeine or sucrose ingestion alone. Instead, reduced sleep strongly correlates with changes in total consumption due to caffeine. Other bitter compounds phenocopy the effect of caffeine on sleep and food intake. Conclusions: Our results suggest that a major effect of dietary caffeine is on fly feeding behavior. Changes in feeding behavior may drive caffeine-mediated sleep loss. Future studies using psychoactive compounds should consider the potential impact of nutrition when investigating effects on sleep.


Assuntos
Cafeína/farmacologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Sono/efeitos dos fármacos , Sacarose/farmacologia , Animais , Ingestão de Alimentos/efeitos dos fármacos , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Feminino , Privação de Alimentos , Sono/fisiologia , Sacarose/administração & dosagem
11.
Proc Natl Acad Sci U S A ; 114(36): 9737-9742, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827349

RESUMO

Changes in body temperature can profoundly affect survival. The dramatic longevity-enhancing effect of cold has long been known in organisms ranging from invertebrates to mammals, yet the underlying mechanisms have only recently begun to be uncovered. In the nematode Caenorhabditis elegans, this process is regulated by a thermosensitive membrane TRP channel and the DAF-16/FOXO transcription factor, but in more complex organisms the underpinnings of cold-induced longevity remain largely mysterious. We report that, in Drosophila melanogaster, variation in ambient temperature triggers metabolic changes in protein translation, mitochondrial protein synthesis, and posttranslational regulation of the translation repressor, 4E-BP (eukaryotic translation initiation factor 4E-binding protein). We show that 4E-BP determines Drosophila lifespan in the context of temperature changes, revealing a genetic mechanism for cold-induced longevity in this model organism. Our results suggest that the 4E-BP pathway, chiefly thought of as a nutrient sensor, may represent a master metabolic switch responding to diverse environmental factors.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Iniciação de Peptídeos/metabolismo , Envelhecimento/genética , Envelhecimento/metabolismo , Animais , Animais Geneticamente Modificados , Temperatura Baixa , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Feminino , Técnicas de Inativação de Genes , Genes de Insetos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Longevidade/genética , Longevidade/fisiologia , Masculino , Proteínas Mitocondriais/biossíntese , Fatores de Iniciação de Peptídeos/deficiência , Fatores de Iniciação de Peptídeos/genética , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Temperatura
12.
J Gerontol A Biol Sci Med Sci ; 72(2): 173-180, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27093874

RESUMO

The Drosophila GeneSwitch system facilitates the spatial and temporal control of gene expression through dietary supplementation of mifepristone (RU486). Because experimental and control groups differ only by treatment with RU486, confounding results from using flies of different genetic backgrounds are eliminated, making GeneSwitch especially useful in studies of aging. However, the effect of RU486 itself on longevity has not been well characterized, particularly in relation to nutritional states known to affect lifespan. Here, we show that RU486 has dose- and diet-dependent effects on longevity in both sexes. On low nutrient diets, RU486 supplementation reduces total food consumption, perhaps exacerbating undernutrition to shorten life. RU486 also inhibits proboscis extension responses to low nutrient diets, suggesting that RU486 has an aversive taste which leads to decreased food consumption and diminished longevity. RU486 is not detrimental to fly lifespan on high nutrient food, correlating with reduced effects of the drug on palatability and total consumption on rich diets. Our results highlight the critical importance of considering how food palatability and nutrient intake might be altered by dietary or drug manipulations in studies of aging and behavior.


Assuntos
Drosophila/efeitos dos fármacos , Drosophila/fisiologia , Comportamento Alimentar/efeitos dos fármacos , Preferências Alimentares/efeitos dos fármacos , Longevidade/efeitos dos fármacos , Mifepristona/farmacologia , Animais , Feminino , Masculino
13.
J Nutr ; 145(12): 2789-96, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26491123

RESUMO

BACKGROUND: Despite the prevalent use of Drosophila as a model in studies of nutrition, the effects of fundamental food properties, such as pH, on animal health and behavior are not well known. OBJECTIVES: We examined the effect of food pH on adult Drosophila lifespan, feeding behavior, and microbiota composition and tested the hypothesis that pH-mediated changes in palatability and total consumption are required for modulating longevity. METHODS: We measured the effect of buffered food (pH 5, 7, or 9) on male gustatory responses (proboscis extension), total food intake, and male and female lifespan. The effect of food pH on germfree male lifespan was also assessed. Changes in fly-associated microbial composition as a result of food pH were determined by 16S ribosomal RNA gene sequencing. Male gustatory responses, total consumption, and male and female longevity were additionally measured in the taste-defective Pox neuro (Poxn) mutant and its transgenic rescue control. RESULTS: An acidic diet increased Drosophila gustatory responses (40-230%) and food intake (5-50%) and extended survival (10-160% longer median lifespan) compared with flies on either neutral or alkaline pH food. Alkaline food pH shifted the composition of fly-associated bacteria and resulted in greater lifespan extension (260% longer median survival) after microbes were eliminated compared with flies on an acidic (50%) or neutral (130%) diet. However, germfree flies lived longer on an acidic diet (5-20% longer median lifespan) compared with those on either neutral or alkaline pH food. Gustatory responses, total consumption, and longevity were unaffected by food pH in Poxn mutant flies. CONCLUSIONS: Food pH can directly influence palatability and feeding behavior and affect parameters such as microbial growth to ultimately affect Drosophila lifespan. Fundamental food properties altered by dietary or drug interventions may therefore contribute to changes in animal physiology, metabolism, and survival.


Assuntos
Drosophila melanogaster/fisiologia , Ingestão de Alimentos/fisiologia , Comportamento Alimentar/fisiologia , Alimentos , Longevidade/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/microbiologia , Feminino , Concentração de Íons de Hidrogênio , Masculino , Mutação , Paladar/genética
14.
Cell Rep ; 12(10): 1656-67, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26321641

RESUMO

Alterations in the composition of the intestinal microbiota have been correlated with aging and measures of frailty in the elderly. However, the relationships between microbial dynamics, age-related changes in intestinal physiology, and organismal health remain poorly understood. Here, we show that dysbiosis of the intestinal microbiota, characterized by an expansion of the Gammaproteobacteria, is tightly linked to age-onset intestinal barrier dysfunction in Drosophila. Indeed, alterations in the microbiota precede and predict the onset of intestinal barrier dysfunction in aged flies. Changes in microbial composition occurring prior to intestinal barrier dysfunction contribute to changes in excretory function and immune gene activation in the aging intestine. In addition, we show that a distinct shift in microbiota composition follows intestinal barrier dysfunction, leading to systemic immune activation and organismal death. Our results indicate that alterations in microbiota dynamics could contribute to and also predict varying rates of health decline during aging in mammals.


Assuntos
Drosophila melanogaster/microbiologia , Microbioma Gastrointestinal , Intestinos/fisiologia , Envelhecimento , Animais , Drosophila melanogaster/fisiologia , Gammaproteobacteria/crescimento & desenvolvimento , Junções Intercelulares/metabolismo , Intestinos/microbiologia , Longevidade
15.
Cell Rep ; 10(6): 865-872, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25683709

RESUMO

Microbes play an important role in the pathogenesis of nutritional disorders such as protein-specific malnutrition. However, the precise contribution of microbes to host energy balance during undernutrition is unclear. Here, we show that Issatchenkia orientalis, a fungal microbe isolated from field-caught Drosophila melanogaster, promotes amino acid harvest to rescue the lifespan of undernourished flies. Using radioisotope-labeled dietary components (amino acids, nucleotides, and sucrose) to quantify nutrient transfer from food to microbe to fly, we demonstrate that I. orientalis extracts amino acids directly from nutrient-poor diets and increases protein flux to the fly. This microbial association restores body mass, protein, glycerol, and ATP levels and phenocopies the metabolic profile of adequately fed flies. Our study uncovers amino acid harvest as a fundamental mechanism linking microbial and host metabolism, and highlights Drosophila as a platform for quantitative studies of host-microbe relationships.

16.
PLoS One ; 9(6): e99025, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24911519

RESUMO

Wolbachia, endosymbionts that reside naturally in up to 40-70% of all insect species, are some of the most prevalent intracellular bacteria. Both Wolbachia wAu, naturally associated with Drosophila simulans, and wMel, native to Drosophila melanogaster, have been previously described to protect their hosts against viral infections. wMel transferred to D. simulans was also shown to have a strong antiviral effect. Here we directly compare one of the most protective wMel variants and wAu in D. melanogaster in the same host genetic background. We conclude that wAu protects better against viral infections, it grows exponentially and significantly shortens the lifespan of D. melanogaster. However, there is no difference between wMel and wAu in the expression of selected antimicrobial peptides. Therefore, neither the difference in anti-viral effect nor the life-shortening could be attributed to the immune stimulation by exogenous Wolbachia. Overall, we prove that stable transinfection with a highly protective Wolbachia is not necessarily associated with general immune activation.


Assuntos
Drosophila melanogaster/imunologia , Drosophila melanogaster/virologia , Wolbachia/imunologia , Wolbachia/virologia , Animais , Drosophila melanogaster/microbiologia , Evolução Molecular , Longevidade , Fenótipo , Polimorfismo Genético , Simbiose
17.
Exp Gerontol ; 48(10): 1129-35, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23403040

RESUMO

Dietary restriction extends lifespan in a variety of organisms, but the key nutritional components driving this process and how they interact remain uncertain. In Drosophila, while a substantial body of research suggests that protein is the major dietary component affecting longevity, recent studies claim that carbohydrates also play a central role. To clarify how nutritional factors influence longevity, nutrient consumption and lifespan were measured on a series of diets with varying yeast and sugar content. We show that optimal lifespan requires both high carbohydrate and low protein consumption, but neither nutrient by itself entirely predicts lifespan. Increased dietary carbohydrate or protein concentration does not always result in reduced feeding-the regulation of food consumption is best described by a constant daily caloric intake target. Moreover, due to differences in food intake, increased concentration of a nutrient within the diet does not necessarily result in increased consumption of that particular nutrient. Our results shed light on the issue of dietary effects on lifespan and highlight the need for accurate measures of nutrient intake in dietary manipulation studies.


Assuntos
Dieta com Restrição de Proteínas , Carboidratos da Dieta/administração & dosagem , Longevidade/fisiologia , Animais , Drosophila melanogaster/fisiologia , Ingestão de Alimentos/fisiologia , Masculino
18.
Appl Environ Microbiol ; 78(18): 6773-6, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22798369

RESUMO

Wolbachia pipientis delays RNA virus-induced mortality in Drosophila spp. We investigated whether Wolbachia-mediated protection was dependent on the small interfering RNA (siRNA) pathway, a key antiviral defense. Compared to Wolbachia-free flies, virus-induced mortality was delayed in Wolbachia-infected flies with loss-of-function of siRNA pathway components, indicating that Wolbachia-mediated protection functions in the absence of the canonical siRNA pathway.


Assuntos
Drosophila melanogaster/microbiologia , Drosophila melanogaster/fisiologia , Redes e Vias Metabólicas , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Wolbachia/genética , Wolbachia/metabolismo , Animais , Drosophila melanogaster/imunologia , Vírus de RNA/imunologia , Análise de Sobrevida
19.
Curr Microbiol ; 63(4): 392-401, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21850475

RESUMO

Yeasts associate with numerous insects, and they can assist the metabolic processes within their hosts. Two distinct yeasts were identified by PCR within the planthopper Perkinsiella saccharicida, the vector of Fiji disease virus to sugarcane. The utility of both microbes for potential paratransgenic approaches to control Fiji leaf gall (FLG) was assessed. Phylogenetic analysis showed one of the microbes is related to yeast-like symbionts from the planthoppers: Laodelphax striatellus, Nilaparvata lugens, and Sogetella furcifera. The second yeast was a member of the Candida genus, a group that has been identified in beetles and recently described in planthoppers. Microscopy revealed the presence of yeast in the fat body of P. saccharicida. The Candida yeast was cultured, and transformation was accomplished by electroporation of Candida albicans codon optimized plasmids, designed to integrate into the genome via homologous recombination. Transgenic lines conferred resistance to the antibiotic nourseothricin and expression of green fluorescent protein was observed in a proportion of the yeast cells. Stably transformed yeast lines could not be isolated as the integrative plasmids presumably replicated within the yeast without integration into the genome. If stable transformation can be achieved, then this yeast may be useful as an agent for a paratransgenic control of FLG.


Assuntos
Hemípteros/microbiologia , Doenças das Plantas/prevenção & controle , Doenças das Plantas/virologia , Reoviridae/fisiologia , Saccharum/virologia , Leveduras/isolamento & purificação , Animais , Hemípteros/fisiologia , Hemípteros/virologia , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Insetos Vetores/virologia , Dados de Sequência Molecular , Controle Biológico de Vetores , Filogenia , Folhas de Planta/virologia , Reoviridae/genética , Simbiose , Leveduras/classificação , Leveduras/genética , Leveduras/fisiologia
20.
Appl Environ Microbiol ; 74(22): 6963-9, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18836024

RESUMO

The horizontal transfer of the bacterium Wolbachia pipientis between invertebrate hosts hinges on the ability of Wolbachia to adapt to new intracellular environments. The experimental transfer of Wolbachia between distantly related host species often results in the loss of infection, presumably due to an inability of Wolbachia to adapt quickly to the new host. To examine the process of adaptation to a novel host, we transferred a life-shortening Wolbachia strain, wMelPop, from the fruit fly Drosophila melanogaster into a cell line derived from the mosquito Aedes albopictus. After long-term serial passage in this cell line, we transferred the mosquito-adapted wMelPop into cell lines derived from two other mosquito species, Aedes aegypti and Anopheles gambiae. After a prolonged period of serial passage in mosquito cell lines, wMelPop was reintroduced into its native host, D. melanogaster, by embryonic microinjection. The cell line-adapted wMelPop strains were characterized by a loss of infectivity when reintroduced into the original host, grew to decreased densities, and had reduced abilities to cause life-shortening infection and cytoplasmic incompatibility compared to the original strain. We interpret these shifts in phenotype as evidence for genetic adaptation to the mosquito intracellular environment. The use of cell lines to preadapt Wolbachia to novel hosts is suggested as a possible strategy to improve the success of transinfection in novel target insect species.


Assuntos
Adaptação Biológica , Inoculações Seriadas , Wolbachia/fisiologia , Aedes , Animais , Anopheles , Linhagem Celular , Drosophila melanogaster/microbiologia , Feminino , Infecções por Bactérias Gram-Negativas/microbiologia , Masculino , Virulência , Wolbachia/patogenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...