Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37219072

RESUMO

Expressions of voltage-gated sodium channels Nav1.1 and Nav1.2, encoded by SCN1A and SCN2A genes, respectively, have been reported to be mutually exclusive in most brain regions. In juvenile and adult neocortex, Nav1.1 is predominantly expressed in inhibitory neurons while Nav1.2 is in excitatory neurons. Although a distinct subpopulation of layer V (L5) neocortical excitatory neurons were also reported to express Nav1.1, their nature has been uncharacterized. In hippocampus, Nav1.1 has been proposed to be expressed only in inhibitory neurons. By using newly generated transgenic mouse lines expressing Scn1a promoter-driven green fluorescent protein (GFP), here we confirm the mutually exclusive expressions of Nav1.1 and Nav1.2 and the absence of Nav1.1 in hippocampal excitatory neurons. We also show that Nav1.1 is expressed in inhibitory and a subpopulation of excitatory neurons not only in L5 but all layers of neocortex. By using neocortical excitatory projection neuron markers including FEZF2 for L5 pyramidal tract (PT) and TBR1 for layer VI (L6) cortico-thalamic (CT) projection neurons, we further show that most L5 PT neurons and a minor subpopulation of layer II/III (L2/3) cortico-cortical (CC) neurons express Nav1.1 while the majority of L6 CT, L5/6 cortico-striatal (CS), and L2/3 CC neurons express Nav1.2. These observations now contribute to the elucidation of pathological neural circuits for diseases such as epilepsies and neurodevelopmental disorders caused by SCN1A and SCN2A mutations.


Assuntos
Neocórtex , Camundongos , Animais , Camundongos Transgênicos , Neocórtex/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Tratos Piramidais , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Neurônios/fisiologia , Células Piramidais/metabolismo
2.
Neurobiol Dis ; 141: 104954, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32445790

RESUMO

Dravet syndrome is a severe infantile-onset epileptic encephalopathy which begins with febrile seizures and is caused by heterozygous loss-of-function mutations of the voltage-gated sodium channel gene SCN1A. We designed a CRISPR-based gene therapy for Scn1a-haplodeficient mice using multiple guide RNAs (gRNAs) in the promoter regions together with the nuclease-deficient Cas9 fused to transcription activators (dCas9-VPR) to trigger the transcription of SCN1A or Scn1a in vitro. We tested the effect of this strategy in vivo using an adeno-associated virus (AAV) mediated system targeting inhibitory neurons and investigating febrile seizures and behavioral parameters. In both the human and mouse genes multiple guide RNAs (gRNAs) in the upstream, rather than downstream, promoter region showed high and synergistic activities to increase the transcription of SCN1A or Scn1a in cultured cells. Intravenous injections of AAV particles containing the optimal combination of 4 gRNAs into transgenic mice with Scn1a-haplodeficiency and inhibitory neuron-specific expression of dCas9-VPR at four weeks of age increased Nav1.1 expression in parvalbumin-positive GABAergic neurons, ameliorated their febrile seizures and improved their behavioral impairments. Although the usage of transgenic mice and rather modest improvements in seizures and abnormal behaviors hamper direct clinical application, our results indicate that the upregulation of Scn1a expression in the inhibitory neurons can significantly improve the phenotypes, even when applied after the juvenile stages. Our findings also suggest that the decrease in Nav1.1 is directly involved in the symptoms seen in adults with Dravet syndrome and open a way to improve this condition.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Epilepsia/genética , Epilepsia/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/fisiologia , Neurônios/fisiologia , Animais , Comportamento Animal , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Epilepsias Mioclônicas/prevenção & controle , Epilepsia/prevenção & controle , Feminino , Neurônios GABAérgicos/fisiologia , Terapia Genética/métodos , Células HEK293 , Humanos , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
3.
Nat Commun ; 10(1): 1917, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015467

RESUMO

STXBP1 and SCN2A gene mutations are observed in patients with epilepsies, although the circuit basis remains elusive. Here, we show that mice with haplodeficiency for these genes exhibit absence seizures with spike-and-wave discharges (SWDs) initiated by reduced cortical excitatory transmission into the striatum. Mice deficient for Stxbp1 or Scn2a in cortico-striatal but not cortico-thalamic neurons reproduce SWDs. In Stxbp1 haplodeficient mice, there is a reduction in excitatory transmission from the neocortex to striatal fast-spiking interneurons (FSIs). FSI activity transiently decreases at SWD onset, and pharmacological potentiation of AMPA receptors in the striatum but not in the thalamus suppresses SWDs. Furthermore, in wild-type mice, pharmacological inhibition of cortico-striatal FSI excitatory transmission triggers absence and convulsive seizures in a dose-dependent manner. These findings suggest that impaired cortico-striatal excitatory transmission is a plausible mechanism that triggers epilepsy in Stxbp1 and Scn2a haplodeficient mice.


Assuntos
Corpo Estriado/metabolismo , Proteínas Munc18/genética , Canal de Sódio Disparado por Voltagem NAV1.2/genética , Neocórtex/metabolismo , Convulsões/genética , Transmissão Sináptica , Potenciais de Ação/efeitos dos fármacos , Animais , Anticonvulsivantes/farmacologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Dioxóis/farmacologia , Eletroencefalografia , Epilepsia Tipo Ausência/tratamento farmacológico , Epilepsia Tipo Ausência/genética , Epilepsia Tipo Ausência/metabolismo , Epilepsia Tipo Ausência/fisiopatologia , Etossuximida/farmacologia , Regulação da Expressão Gênica , Haploinsuficiência , Interneurônios/efeitos dos fármacos , Interneurônios/metabolismo , Interneurônios/patologia , Camundongos , Camundongos Knockout , Proteínas Munc18/deficiência , Canal de Sódio Disparado por Voltagem NAV1.2/deficiência , Neocórtex/efeitos dos fármacos , Neocórtex/patologia , Vias Neurais/efeitos dos fármacos , Vias Neurais/metabolismo , Piperidinas/farmacologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismo , Convulsões/metabolismo , Convulsões/fisiopatologia , Convulsões/prevenção & controle , Transdução de Sinais , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
4.
Commun Biol ; 1: 96, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30175250

RESUMO

Mutations in the SCN2A gene encoding a voltage-gated sodium channel Nav1.2 are associated with epilepsies, intellectual disability, and autism. SCN2A gain-of-function mutations cause early-onset severe epilepsies, while loss-of-function mutations cause autism with milder and/or later-onset epilepsies. Here we show that both heterozygous Scn2a-knockout and knock-in mice harboring a patient-derived nonsense mutation exhibit ethosuximide-sensitive absence-like seizures associated with spike-and-wave discharges at adult stages. Unexpectedly, identical seizures are reproduced and even more prominent in mice with heterozygous Scn2a deletion specifically in dorsal-telencephalic (e.g., neocortical and hippocampal) excitatory neurons, but are undetected in mice with selective Scn2a deletion in inhibitory neurons. In adult cerebral cortex of wild-type mice, most Nav1.2 is expressed in excitatory neurons with a steady increase and redistribution from proximal (i.e., axon initial segments) to distal axons. These results indicate a pivotal role of Nav1.2 haplodeficiency in excitatory neurons in epilepsies of patients with SCN2A loss-of-function mutations.

5.
Biochem Biophys Res Commun ; 491(4): 1070-1076, 2017 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-28784306

RESUMO

Nav1.1 and Nav1.2 are the voltage-gated sodium channel pore-forming alpha I and II subunits, encoded by the genes SCN1A and SCN2A. Although mutations of both genes have similarly been described in patients with epilepsy, autism and/or intellectual disability, their expression sites in brain are largely distinct. Nav1.1 was shown to be expressed dominantly in parvalbumin (PV)-positive or somatostatin (SST)-positive inhibitory neurons and in a sparsely-distributed subpopulation of excitatory neurons. In contrast, Nav1.2 has been reported to be dominantly expressed in excitatory neurons. Here we show that Nav1.2 is also expressed in caudal ganglionic eminence (CGE)-derived inhibitory neurons, and expressions of Nav1.1 and Nav1.2 are mutually-exclusive in many of brain regions including neocortex, hippocampus, cerebellum, striatum and globus pallidus. In neocortex at postnatal day 15, in addition to the expression in excitatory neurons we show that Nav1.2 is expressed in reelin (RLN)-positive/SST-negative inhibitory neurons that are presumably single-bouquet cells because of their cortical layer I-limited distribution, and vasoactive intestinal peptide (VIP)-positive neurons that would be multipolar cell because of their layer I/II margin and layer VI distribution. Although Nav1.2 has previously been reported to be expressed in SST-positive cells, we here show that Nav1.2 is not expressed in either of PV-positive or SST-positive inhibitory neurons. PV-positive and SST-positive inhibitory neurons derive from medial ganglionic eminence (MGE) and innervate excitatory neurons, while VIP-positive and RLN-positive/SST-negative inhibitory neurons derive from CGE, innervate on inhibitory neurons and play disinhibitory roles in the neural network. Our results therefore indicate that, while Nav1.1 is expressed in MEG-derived inhibitory neurons, Nav1.2 is expressed in CGE-derived disinhibitory interneurons in addition to excitatory neurons. These findings should contribute to understanding of the pathology of neurodevelopmental diseases caused by SCN2A mutations.


Assuntos
Interneurônios/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.1/biossíntese , Canal de Sódio Disparado por Voltagem NAV1.2/biossíntese , Animais , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteína Reelina
6.
J Drug Target ; 24(1): 58-67, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26133964

RESUMO

Research was undertaken to establish transplacental delivery of active genes to fetal brain by a non-viral vector, antibody-specific targeted therapeutic procedure. PEGylated immunoliposomes (PILs) containing firefly luciferase DNA under the influence of the SV40 promoter injected intravenously into near-term pregnant mice produced luminometric evidence of CNS tissue luciferase activity at 48-h post-injection in all newborn pups. In utero delivery of this pGL3 DNA was shown after a single i.v. injection in maternal and neonatal brains, spleen and lesser amounts in lungs, with only negligible background levels in negative controls exposed to unencapsulated pDNA. In addition to studies of normal wild-type mice, we similarly injected pregnant Lafora Knockout (EPM2a null-mutant) and demonstrated luciferase activity days later in the maternal and newborn pup brains of both types. Delivery of PILs containing a second reporter gene (the pSV40 beta-galactosidase transgene) transplacentally by the same procedure was also successful. Histochemical and biochemical demonstration of beta-galactosidase was documented for all mutant and non-mutant neonates. Brain areas of highest Lafora body development (such as the hippocampus and pontine nuclei) showed intraneuronal beta-glucosidase activity. We conclude that receptor-mediated transport of PIL-borne gene therapeutics across both the placental barrier as well as the fetal BBB in utero is feasible.


Assuntos
Feto/metabolismo , Marcação de Genes/métodos , Lipossomos/imunologia , Luciferases de Vaga-Lume/genética , Luciferases de Vaga-Lume/farmacologia , Administração Intravenosa , Animais , Encéfalo/metabolismo , Endocitose , Feminino , Genes Reporter , Doença de Lafora/genética , Lipossomos/química , Luciferases de Vaga-Lume/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placenta/metabolismo , Plasmídeos/metabolismo , Polietilenoglicóis/química , Gravidez , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores da Transferrina/metabolismo , Distribuição Tecidual , Transgenes/efeitos dos fármacos , beta-Galactosidase/metabolismo
7.
Hum Mol Genet ; 22(23): 4784-804, 2013 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23922229

RESUMO

Dravet syndrome is a severe epileptic encephalopathy mainly caused by heterozygous mutations in the SCN1A gene encoding a voltage-gated sodium channel Nav1.1. We previously reported dense localization of Nav1.1 in parvalbumin (PV)-positive inhibitory interneurons in mice and abnormal firing of those neurons in Nav1.1-deficient mice. In the present study, we investigated the physiologic consequence of selective Nav1.1 deletion in mouse global inhibitory neurons, forebrain excitatory neurons or PV cells, using vesicular GABA transporter (VGAT)-Cre, empty spiracles homolog 1 (Emx1)-Cre or PV-Cre recombinase drivers. We show that selective Nav1.1 deletion using VGAT-Cre causes epileptic seizures and premature death that are unexpectedly more severe than those observed in constitutive Nav1.1-deficient mice. Nav1.1 deletion using Emx1-Cre does not cause any noticeable abnormalities in mice; however, the severe lethality observed with VGAT-Cre-driven Nav1.1 deletion is rescued by additional Nav1.1 deletion using Emx1-Cre. In addition to predominant expression in PV interneurons, we detected Nav1.1 in subpopulations of excitatory neurons, including entorhino-hippocampal projection neurons, a subpopulation of neocortical layer V excitatory neurons, and thalamo-cortical projection neurons. We further show that even minimal selective Nav1.1 deletion, using PV-Cre, is sufficient to cause spontaneous epileptic seizures and ataxia in mice. Overall, our results indicate that functional impairment of PV inhibitory neurons with Nav1.1 haploinsufficiency contributes to the epileptic pathology of Dravet syndrome, and show for the first time that Nav1.1 haploinsufficiency in excitatory neurons has an ameliorating effect on the pathology.


Assuntos
Epilepsias Mioclônicas/genética , Epilepsias Mioclônicas/fisiopatologia , Canal de Sódio Disparado por Voltagem NAV1.1/fisiologia , Animais , Morte Súbita , Modelos Animais de Doenças , Haploinsuficiência , Interneurônios/metabolismo , Interneurônios/patologia , Camundongos , Mutação , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Neurônios/metabolismo , Neurônios/patologia , Parvalbuminas/metabolismo
8.
Epilepsia ; 53(12): e200-3, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23148524

RESUMO

Dravet syndrome is a severe form of epileptic encephalopathy characterized by early onset epileptic seizures followed by ataxia and cognitive decline. Approximately 80% of patients with Dravet syndrome have been associated with heterozygous mutations in SCN1A gene encoding voltage-gated sodium channel (VGSC) α(I) subunit, whereas a homozygous mutation (p.Arg125Cys) of SCN1B gene encoding VGSC ß(I) subunit was recently described in a patient with Dravet syndrome. To further examine the involvement of homozygous SCN1B mutations in the etiology of Dravet syndrome, we performed mutational analyses on SCN1B in 286 patients with epileptic disorders, including 67 patients with Dravet syndrome who have been negative for SCN1A and SCN2A mutations. In the cohort, we found one additional homozygous mutation (p.Ile106Phe) in a patient with Dravet syndrome. The identified homozygous SCN1B mutations indicate that SCN1B is an etiologic candidate underlying Dravet syndrome.


Assuntos
Epilepsias Mioclônicas/genética , Mutação/genética , Subunidade beta-1 do Canal de Sódio Disparado por Voltagem/genética , Análise Mutacional de DNA , Homozigoto , Humanos , Masculino , Repetições de Microssatélites/genética , Adulto Jovem
9.
Biochem Biophys Res Commun ; 367(1): 226-33, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18164683

RESUMO

EFHC1 is a gene mutated in patients with idiopathic epilepsies, and encodes the myoclonin1 protein. We here report the distribution of myoclonin1 in mouse. Immunohistochemical analyses revealed that the myoclonin1 first appeared at the roof of hindbrain at embryonic day 10 (E10), and moved on to choroid plexus at E14. At E18, it moved to ventricle walls and disappeared from choroid plexus. From neonatal to adult stages, myoclonin1 was concentrated in the cilia of ependymal cells at ventricle walls. At adult stages, myoclonin1 expression was also observed at tracheal epithelial cilia in lung and at sperm flagella in testis. Specificities of these immunohistochemical signals were verified by using Efhc1-deficient mice as negative controls. Results of Efhc1 mRNA in situ hybridization were also consistent with the immunohistochemical observations. Our findings raise "choroid plexusopathy" or "ciliopathy" as intriguing candidate cascades for the molecular pathology of epilepsies caused by the EFHC1 mutations.


Assuntos
Proteínas de Ligação ao Cálcio/genética , Plexo Corióideo/metabolismo , Cílios/metabolismo , Epêndima/metabolismo , Regulação da Expressão Gênica/genética , Adulto , Animais , Sequência de Bases , Proteínas de Ligação ao Cálcio/metabolismo , Plexo Corióideo/citologia , Plexo Corióideo/embriologia , Epêndima/citologia , Epêndima/embriologia , Regulação da Expressão Gênica/fisiologia , Humanos , Imuno-Histoquímica , Hibridização In Situ , Pulmão/citologia , Pulmão/embriologia , Pulmão/metabolismo , Masculino , Camundongos , Mutação , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , Espermatozoides/citologia , Espermatozoides/metabolismo , Testículo/citologia , Testículo/metabolismo , Fatores de Tempo
10.
Proc Natl Acad Sci U S A ; 100(13): 7708-13, 2003 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-12799463

RESUMO

Despite their high degree of genomic similarity, reminiscent of their relatively recent separation from each other ( approximately 6 million years ago), the molecular basis of traits unique to humans vs. their closest relative, the chimpanzee, is largely unknown. This report describes a large-scale single-contig comparison between human and chimpanzee genomes via the sequence analysis of almost one-half of the immunologically critical MHC. This 1,750,601-bp stretch of DNA, which encompasses the entire class I along with the telomeric part of the MHC class III regions, corresponds to an orthologous 1,870,955 bp of the human HLA region. Sequence analysis confirms the existence of a high degree of sequence similarity between the two species. However, and importantly, this 98.6% sequence identity drops to only 86.7% taking into account the multiple insertions/deletions (indels) dispersed throughout the region. This is functionally exemplified by a large deletion of 95 kb between the virtual locations of human MICA and MICB genes, which results in a single hybrid chimpanzee MIC gene, in a segment of the MHC genetically linked to species-specific handling of several viral infections (HIV/SIV, hepatitis B and C) as well as susceptibility to various autoimmune diseases. Finally, if generalized, these data suggest that evolution may have used the mechanistically more drastic indels instead of the more subtle single-nucleotide substitutions for shaping the recently emerged primate species.


Assuntos
Evolução Molecular , Deleção de Genes , Genes MHC Classe I , Mutação , Animais , Cromossomos Artificiais Bacterianos , Mapeamento de Sequências Contíguas , Humanos , Modelos Genéticos , Dados de Sequência Molecular , Pan troglodytes , Polimorfismo Genético , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...