Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 141
Filtrar
1.
Cancers (Basel) ; 16(8)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38672586

RESUMO

The usefulness of comprehensive genomic profiling (CGP) in the Japanese healthcare insurance system remains underexplored. Therefore, this large-scale study aimed to determine the usefulness of CGP in diagnosing digestive cancers. Patients with various cancer types recruited between March 2020 and October 2022 underwent the FoundationOne® CDx assay at the Keio PleSSision Group (19 hospitals in Japan). A scoring system was developed to identify potentially actionable genomic alterations of biological significance and actionable genomic alterations. The detection rates for potentially actionable genomic alterations, actionable genomic alterations, and alterations equivalent to companion diagnosis (CDx), as well as the signaling pathways associated with these alterations in each digestive cancer, were analyzed. Among the 1587 patients, 547 had digestive cancer. The detection rates of potentially actionable genomic alterations, actionable genomic alterations, and alterations equivalent to CDx were 99.5%, 62.5%, and 11.5%, respectively. APC, KRAS, and CDKN2A alterations were frequently observed in colorectal, pancreatic, and biliary cancers, respectively. Most digestive cancers, except esophageal cancer, were adenocarcinomas. Thus, the classification flowchart for digestive adenocarcinomas proposed in this study may facilitate precise diagnosis. CGP has clinical and diagnostic utility in digestive cancers.

2.
Biomed Res ; 45(2): 91-101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556266

RESUMO

Hemoglobin vesicles (HbVs), considered as red blood cell substitutes, are liposomes encapsulating purified hemoglobin, with a phospholipid bilayer membrane (diameter: 250 nm; P50, 28 Torr). In this study, we aimed to investigate HbV function during hemorrhagic shock in lung resection and analyze the details of oxygen delivery. Left pneumonectomy was performed in dogs under mechanical ventilation, followed by rapid exsanguination of approximately 30% of the total circulating blood volume, which led to shock, reducing the mean arterial pressure (MAP) by approximately 60% of baseline. Subsequently, either 5% human serum albumin (HSA) or HbVs suspended in 5% HSA were infused for resuscitation. The MAP only recovered to 75% of baseline after HSA administration, but fully recovered (100%) after HbV administration, with significant differences between the groups (P < 0.005). Oxygen delivery was restored in the HbV group and was significantly higher than that in the HSA group (P < 0.0001). The infusion of HbVs dispersed in a 5% HSA solution compensated for the rapid loss of approximately 30% of the total circulating blood volume in a dog pneumonectomy model, even with impaired lung function. Thus, HbVs can be used for resuscitation from hemorrhagic shock during thoracic surgery.


Assuntos
Choque Hemorrágico , Cães , Humanos , Animais , Choque Hemorrágico/terapia , Hemoglobinas/metabolismo , Lipossomos , Ressuscitação , Oxigênio/metabolismo
3.
Cancer Sci ; 115(2): 635-647, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38041241

RESUMO

Tumor sensitivity to platinum (Pt)-based chemotherapy and poly(adenosine diphosphate ribose) polymerase (PARP) inhibitors is increased by homologous recombination deficiency-causing mutations; in particular, reversion mutations cause drug resistance by restoring protein function. Treatment response is predicted by breast cancer susceptibility gene 1/2 (BRCA1/2) mutations; however, BRCA1/2 reversion mutations have not been comprehensively studied in pan-cancer cohorts. We aimed to characterize BRCA1/2 reversion mutations in a large pan-cancer cohort of Japanese patients by retrospectively analyzing sequencing data for BRCA1/2 pathogenic/likely pathogenic mutations in 3738 patients with 32 cancer types. We identified somatic mutations in tumors or circulating cell-free DNA that could restore the ORF of adverse alleles, including reversion mutations. We identified 12 (0.32%) patients with somatic BRCA1 (n = 3) and BRCA2 (n = 9) reversion mutations in breast (n = 4), ovarian/fallopian tube/peritoneal (n = 4), pancreatic (n = 2), prostate (n = 1), and gallbladder (n = 1) cancers. We identified 21 reversion events-BRCA1 (n = 3), BRCA2 (n = 18)-including eight pure deletions, one single-nucleotide variant, six multinucleotide variants, and six deletion-insertions. Seven (33.3%) reversion deletions showed a microhomology length greater than 1 bp, suggesting microhomology-mediated end-join repair. Disease course data were obtained for all patients with reversion events: four patients acquired mutations after PARP-inhibitor treatment failure, two showed somatic reversion mutations after disease progression, following Pt-based treatment, five showed mutations after both treatments, one patient with pancreatic cancer and BRCA1 reversion mutations had no history of either treatment. Although reversion mutations commonly occur in BRCA-associated cancers, our findings suggest that reversion mutations due to Pt-chemotherapy might be correlated with BRCA1/2-mediated tumorigenesis even in non-BRCA-associated histologies.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Masculino , Feminino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Proteína BRCA1/genética , Proteína BRCA2/genética , Neoplasias Ovarianas/genética , Mutação em Linhagem Germinativa , Estudos Retrospectivos , Mutação , Poli(ADP-Ribose) Polimerases
4.
Hum Genome Var ; 10(1): 25, 2023 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-37696855

RESUMO

Osteogenesis imperfecta (OI) is a rare genetic disorder characterized by brittle bones. In this case report, we describe a patient who suffered from OI type XIV with a novel splice site variant in the TMEM38B gene. Further research is needed to better understand the relationship between the phenotype of OI type XIV and this variant.

5.
Microbiol Spectr ; : e0256123, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37732762

RESUMO

Microbial volatile metabolite 2-methylisoborneol (2-MIB) causes odor and taste issues in drinking water, making it unappealing for human consumption. It has been suggested that 2-MIB biosynthesis consists of two main steps, namely, methylation of geranyl diphosphate into 2-methyl geranyl diphosphate by geranyl diphosphate methyl transferase (GPPMT) and subsequent cyclization into 2-MIB by 2-MIB synthase (MIBS). Pseudanabaena foetida var. intermedia is a 2-MIB-producing cyanobacterium whose GPPMT and MIBS enzymes are encoded by adjacent mtf and mtc genes. The present study identified a 2-MIB-related gene cluster composed of cnbA, mtf, mtc, and cnbB genes in P. foetida var. intermedia. The two homologous cyclic nucleotide-binding protein genes, cnbA and cnbB, were detected adjacent to the mtf and mtc genes, respectively. The nucleotide sequence of the cnbA-mtf-mtc-cnbB gene cluster showed 99.55% identity with 2-MIB synthesis-associated gene cluster of Pseudanabaena sp. dqh15. RT-PCR results revealed that mtf and mtc genes are co-expressed, while cnbA and cnbB genes are expressed independently in P. foetida var. intermedia. To investigate whether only mtf and mtc genes are sufficient for 2-MIB synthesis, the two-gene unit (mtf-mtc) was introduced into Escherichia coli strain JM109 via overexpression vector pYS1C. Gas chromatograph-mass spectrometry results showed that the E. coli strain transformed with mtf-mtc was able to produce 2-MIB. The intracellular 2-MIB level in P. foetida var. intermedia was higher than the extracellular 2-MIB level, while the transformed E. coli strain showed an opposite trend. Growth inhibition was observed in the 2-MIB-producing transformed E. coli strain. IMPORTANCE Contamination of drinking water with odiferous microbial metabolite 2-MIB is a worldwide concern. Removal of 2-MIB from drinking water burdens the water purification process. Therefore, it is important to search for alternative methods, such as suppressing the production of 2-MIB by aquatic microorganisms. For that, it is necessary to expand the current knowledge about the mechanism of 2-MIB synthesis at the genetic level. This study revealed that mtf and mtc genes of the 2-MIB-related gene cluster are transcribed as a single unit in P. foetida var. intermedia, and the expression of both mtf and mtc genes is essential and sufficient for 2-MIB synthesis in E. coli heterologous gene expression system.

6.
Plant Direct ; 7(9): e529, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37731912

RESUMO

The NAM, ATAF1/2, and CUC2 (NAC) domain transcription factor VND-INTERACTING2 (VNI2) negatively regulates xylem vessel formation by interacting with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel formation. Here, we screened interacting proteins with VNI2 using yeast two-hybrid assay and isolated two NAC domain transcription factors, Arabidopsis thaliana ACTIVATION FACTOR 2 (ATAF2) and NAC DOMAIN CONTAINING PROTEIN 102 (ANAC102). A transient gene expression assay showed that ATAF2 upregulates the expression of genes involved in leaf senescence, and VNI2 effectively inhibits the transcriptional activation activity of ATAF2. vni2 mutants accelerate leaf senescence, whereas ataf2 mutants delay leaf senescence. In addition, the accelerated leaf senescence phenotype of the vni2 mutant is recovered by simultaneous mutation of ATAF2. Our findings strongly suggest that VNI2 interacts with and inhibits ATAF2, resulting in negatively regulating leaf senescence.

7.
Hum Genet ; 142(10): 1451-1460, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37615740

RESUMO

Constitutional complex chromosomal rearrangements (CCRs) are rare cytogenetic aberrations arising in the germline via an unknown mechanism. Here we analyzed the breakpoint junctions of microscopically three-way or more complex translocations using comprehensive genomic and epigenomic analyses. All of these translocation junctions showed submicroscopic genomic complexity reminiscent of chromothripsis. The breakpoints were clustered within small genomic domains with junctions showing microhomology or microinsertions. Notably, all of the de novo cases were of paternal origin. The breakpoint distributions corresponded specifically to the ATAC-seq (assay for transposase-accessible chromatin with sequencing) read data peak of mature sperm and not to other chromatin markers or tissues. We propose that DNA breaks in CCRs may develop in an accessible region of densely packaged chromatin during post-meiotic spermiogenesis.


Assuntos
DNA , Sêmen , Masculino , Humanos , Aberrações Cromossômicas , Cromatina/genética , Espermatozoides , Translocação Genética
8.
Plant Signal Behav ; 18(1): 2215618, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37272565

RESUMO

Arabidopsis NADK2 (NAD kinase 2) is a chloroplast-localized enzyme involved in NADP+ synthesis, which acts as the final electron acceptor in the photosynthetic electron transfer chain. The NADK2-deficient mutant (nadk2) was used to analyze the effect of NAD(P)(H) unbalance in the dark-induced leaf senescence. During senescence, WT plants and nadk2 mutants showed a similar reduction in chlorophyll content. NAD(P)(H) quantification showed that the amount of total NAD(P)(H) decreased on the day 7 in WT but on the day 3 in nadk2. The phosphorylation ratio (i.e. NADP(H)/NAD(H)) decreased on day 1 in WT. In contrast, the nadk2 showed lower phosphorylation ratio at 0 day and no change throughout the aging process. Metabolome analysis showed that the metabolic profiles of both WT plants and nadk2 mutants subjected to dark-induced senescence adopted similar patterns as the senescence progressed. However, the changes in individual metabolites in the nadk2 mutants were different from those of the WT during dark-induced senescence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , NAD/metabolismo , NADP/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Senescência Vegetal
9.
J Plant Physiol ; 283: 153950, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36889102

RESUMO

Nicotinamide adenine dinucleotides (NAD+ and NADP+) are electron mediators involved in various metabolic pathways. NADP(H) are produced by NAD kinase (NADK) through the phosphorylation of NAD(H). The Arabidopsis NADK3 (AtNADK3) is reported to preferentially phosphorylate NADH to NADPH and is localized in the peroxisome. To elucidate the biological function of AtNADK3 in Arabidopsis, we compared metabolites of nadk1, nadk2 and nadk3 Arabidopsis T-DNA inserted mutants. Metabolome analysis revealed that glycine and serine, which are intermediate metabolites of photorespiration, both increased in the nadk3 mutants. Plants grown for 6 weeks under short-day conditions showed increased NAD(H), indicating a decrease in the phosphorylation ratio in the NAD(P)(H) equilibrium. Furthermore, high CO2 (0.15%) treatment induced a decrease in glycine and serine in nadk3 mutants. The nadk3 showed a significant decrease in post-illumination CO2 burst, suggesting that the photorespiratory flux was disrupted in the nadk3 mutant. In addition, an increase in CO2 compensation points and a decrease in CO2 assimilation rate were observed in the nadk3 mutants. These results indicate that the lack of AtNADK3 causes a disruption in the intracellular metabolism, such as in amino acid synthesis and photorespiration.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Glicina/metabolismo , NAD/metabolismo , NADP/metabolismo , Serina/metabolismo
10.
J Plant Res ; 136(1): 97-106, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36367584

RESUMO

Chloroplast-localized NAD kinase (NADK2) is responsible for the production of NADP+, which is an electron acceptor in the linear electron flow of photosynthesis. The Arabidopsis T-DNA-inserted mutant of NADK2 (nadk2) showed delayed growth and pale-green leaves under continuous light conditions. Under short-day conditions (8 h light / 16 h dark), the nadk2 mutant showed more severe growth inhibition.The genomic fragment containing the promoter and coding region of NADK2 complemented the phenotypes of nadk2 obtained under continuous light and short-day conditions. The nadk2 mutant produced higher amounts of H2O2 and O2-, which were reduced in the complementary line. Under short-day conditions, the nadk2 mutant accumulated more H2O2 than under continuous light conditions. The accumulation of ascorbate and up-regulation of the PDF1.2 and PR1 genes indicated that the nadk2 mutant is under ROS stress and responding to keep its living activities.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiologia , Espécies Reativas de Oxigênio , Peróxido de Hidrogênio , Cloroplastos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fotossíntese/fisiologia
11.
Metabolomics ; 18(12): 95, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36409428

RESUMO

INTRODUCTION: Plant cell walls play an important role in providing physical strength and defence against abiotic stress. Rice brittle culm (bc) mutants are a strength-decreased mutant because of abnormal cell walls, and it has been reported that the causative genes of bc mutants affect cell wall composition. However, the metabolic alterations in each organ of bc mutants have remained unknown. OBJECTIVES: To evaluate the metabolic changes in rice bc mutants, comparative analysis of the primary metabolites was conducted. METHODS: The primary metabolites in leaves, internodes, and nodes of rice bc mutants and wild-type control were measured using CE- and LC-MS/MS. Multivariate analyses using metabolomic data was performed. RESULTS: We found that mutations in each bc mutant had different effects on metabolism. For example, higher oxalate content was observed in bc3 and bc1 bc3 mutants, suggesting that surplus carbon that was not used for cell wall components might be used for oxalate synthesis. In addition, common metabolic alterations such as a decrease of sugar nucleotides in nodes were found in bc1 and Bc6, in which the causative genes are involved in cellulose accumulation. CONCLUSION: These results suggest that metabolic analysis of the bc mutants could elucidate the functions of causative gene and improve the cell wall components for livestock feed or bioethanol production.


Assuntos
Oryza , Oryza/genética , Oryza/metabolismo , Cromatografia Líquida , Metabolômica , Espectrometria de Massas em Tandem , Oxalatos/metabolismo
12.
J Surg Case Rep ; 2022(9): rjac430, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36158252

RESUMO

Aplastic/twig-like middle cerebral artery is a rare vascular abnormality. We report a case of postoperative cerebral infarction caused by this disease. The patient is a male in his 40s. A 9-cm tumour was revealed to have invaded the superior vena cava from his right lung. He underwent right upper and middle bilobectomy. Due to the vascular invasion, the intraoperative bleeding exceeded 2 litres. Mechanical ventilation was required for postoperative pneumonia. After extubation, he was unable to write and was found to have cerebral infiltration in the left middle cerebral artery region. The cause of the cerebral infarction was investigated, but no thrombus in the left atrium or arteriosclerosis was found. No atrial fibrillation was observed during or after the surgery. Magnetic resonance angiography of the brain revealed an aplastic/twig-like middle cerebral artery.

13.
Plant Biotechnol (Tokyo) ; 39(2): 147-153, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35937523

RESUMO

An Arabidopsis NAC domain transcription factor VND-INTERACTING2 (VNI2) was originally isolated as an interacting protein with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel element differentiation. VNI2 inhibits transcriptional activation activity of VND7 by forming a protein complex. Here, to obtain insights into how VNI2 regulates VND7, we tried to identify the amino acid region of VNI2 required for inhibition of VND7. VNI2 has an amino acid sequence similar to the ETHYLENE-RESPONSIVE ELEMENT BINDING FACTOR (ERF)-associated amphiphilic repression (EAR) motif, conserved in transcriptional repressors, at the C-terminus. A transient expression assay showed that the EAR-like motif of VNI2 was not required for inhibition of VND7. The C-terminal deletion series of VNI2 revealed that 10 amino acid residues, highly conserved in the VNI2 orthologs contributed to effective repression of the transcriptional activation activity of VND7. Observation of transgenic plants ectopically expressing VNI2 showed that the identified 10 amino acid sequence strongly affected xylem vessel formation and plant growth. These data indicated that the 10 amino acid sequence of VNI2 has an important role in its transcriptional repression activity and negative regulation of xylem vessel formation.

14.
Biomed Res ; 43(4): 137-144, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35989289

RESUMO

Hemoglobin vesicles (HbVs), liposomes containing concentrated hemoglobin extracted from outdated human red blood cells (RBC), are artificial oxygen carriers with a small particle size. To evaluate the reperfusion of capillaries with HbVs in a tracheal transplant model and compare it with that of RBC. Isogenic mice were used as donors and recipients in a parallel trachea transplant model. Both ends of the donor trachea were anastomosed end-laterally to the recipient trachea to form in parallel. After transplantation, 0.3 mL of HbV solution (Hb concentration, 10 g/dL) was administered via the tail vein. The recipients were euthanized 1, 4, 6, and 8 h after surgery (n = 5 in each group). The tracheas were harvested, and tracheal subepithelial capillaries (SEC) reperfusion was histologically evaluated. A significant number of particles defined as HbV by electron microscopy were observed in the SEC of the grafted tracheas 4 h after the transplant surgery and HbV administration when no RBC were found in the SECs. The number increased 6 and 8 h later. Our findings suggest that HbVs, which are smaller than RBC, can reperfuse the capillaries of grafts earlier than RBCs after transplantation and contribute to the oxygenation of transplanted tissues.


Assuntos
Capilares , Traqueia , Animais , Modelos Animais de Doenças , Eritrócitos , Hemoglobinas , Humanos , Camundongos , Reperfusão , Traqueia/transplante
15.
Plant Physiol ; 189(2): 839-857, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35312013

RESUMO

Plant sphingolipids mostly possess 2-hydroxy fatty acids (HFA), the synthesis of which is catalyzed by FA 2-hydroxylases (FAHs). In Arabidopsis (Arabidopsis thaliana), two FAHs (FAH1 and FAH2) have been identified. However, the functions of FAHs and sphingolipids with HFAs (2-hydroxy sphingolipids) are still unknown because of the lack of Arabidopsis lines with the complete deletion of FAH1. In this study, we generated a FAH1 mutant (fah1c) using CRISPR/Cas9-based genome editing. Sphingolipid analysis of fah1c, fah2, and fah1cfah2 mutants revealed that FAH1 hydroxylates very long-chain FAs (VLCFAs), whereas the substrates of FAH2 are VLCFAs and palmitic acid. However, 2-hydroxy sphingolipids are not completely lost in the fah1cfah2 double mutant, suggesting the existence of other enzymes catalyzing the hydroxylation of sphingolipid FAs. Plasma membrane (PM) analysis and molecular dynamics simulations revealed that hydroxyl groups of sphingolipid acyl chains play a crucial role in the organization of nanodomains, which are nanoscale liquid-ordered domains mainly formed by sphingolipids and sterols in the PM, through hydrogen bonds. In the PM of the fah1cfah2 mutant, the expression levels of 26.7% of the proteins, including defense-related proteins such as the pattern recognition receptors (PRRs) brassinosteroid insensitive 1-associated receptor kinase 1 and chitin elicitor receptor kinase 1, NADPH oxidase respiratory burst oxidase homolog D (RBOHD), and heterotrimeric G proteins, were lower than that in the wild-type. In addition, reactive oxygen species (ROS) burst was suppressed in the fah1cfah2 mutant after treatment with the pathogen-associated molecular patterns flg22 and chitin. These results indicated that 2-hydroxy sphingolipids are necessary for the organization of PM nanodomains and ROS burst through RBOHD and PRRs during pattern-triggered immunity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Membrana Celular/metabolismo , Quitina/metabolismo , Ácidos Graxos/metabolismo , Oxigenases de Função Mista/genética , Oxigenases de Função Mista/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Explosão Respiratória , Esfingolipídeos/metabolismo
16.
J Med Case Rep ; 15(1): 525, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663426

RESUMO

BACKGROUND: Desmoplastic fibroblastoma (also known as collagenous fibroma) is a benign, slowly growing soft-tissue tumor. Most desmoplastic fibroblastomas develop in the limbs, neck, or trunk. A mediastinal origin is quite rare. CASE PRESENTATION: A 32-year-old Asian female was referred to us for the diagnosis and treatment of an anterior mediastinal tumor. The tumor was 80 mm in the largest diameter and was located on the pericardium. No invasion was evident. She underwent resection of the tumor via video-assisted thoracoscopic resection. The tumor was totally encapsulated, and its pedicle was on the pericardium. The resected specimen was very rigid, making it difficult to remove from the intercostal space. Histologically, the tumor was composed of a paucicellular dense collagenous tissue. Mitosis was rarely observed, and cellular atypia was not evident, suggesting that the tumor was benign. We diagnosed the tumor as a desmoplastic fibroblastoma by morphology and immunohistochemistry. CONCLUSIONS: Desmoplastic fibroblastoma of the mediastinum is an extremely rare disease. Preoperative diagnosis is difficult. Early surgical resection is suitable for diagnosis and treatment planning.


Assuntos
Fibroma Desmoplásico , Neoplasias de Tecidos Moles , Parede Torácica , Adulto , Feminino , Humanos , Imuno-Histoquímica , Mediastino/diagnóstico por imagem , Mediastino/cirurgia
17.
J Plant Physiol ; 265: 153495, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34411985

RESUMO

Nicotinamide adenine dinucleotides (NAD(H)) and NAD phosphates (NADP(H)) are electron carriers involved in redox reactions and metabolic processes in all organisms. NAD kinase (NADK) is the only enzyme that phosphorylates NAD+ into NADP+, using ATP as a phosphate donor. In NADP-dependent malic enzyme (NADP-ME)-type C4 photosynthesis, NADP(H) are required for dehydrogenation by NADP-dependent malate dehydrogenase (NADP-MDH) in mesophyll cells, and decarboxylation by NADP-ME in bundle sheath cells. In this study, we identified five NADK genes (FbNADK1a, 1b, 2a, 2b, and 3) from the C4 model species Flaveria bidentis. RNA-Seq database analysis revealed higher transcript abundance in one of the chloroplast-type NADK2 genes of C4F. bidentis (FbNADK2a). Comparative analysis of NADK activity in leaves of C3, C3-C4, and C4Flaveria showed that C4Flaveria (F. bidentis and F. trinervia) had higher NADK activity than the other photosynthetic-types of Flaveria. Taken together, our results suggest that chloroplastic NAD kinase appeared to increase in importance as C3 plants evolved into C4 plants in the genus Flaveria.


Assuntos
Cloroplastos/enzimologia , Cloroplastos/genética , Flaveria/enzimologia , Flaveria/genética , NADP/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Genética , Genótipo , NADP/genética
18.
Plant Cell Physiol ; 62(4): 668-677, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560438

RESUMO

NADP+, the phosphorylated form of nicotinamide adenine dinucleotide (NAD), plays an essential role in many cellular processes. NAD kinase (NADK), which is conserved in all living organisms, catalyzes the phosphorylation of NAD+ to NADP+. However, the physiological role of phosphorylation of NAD+ to NADP+ in the cyanobacterium Synechocystis remains unclear. In this study, we report that slr0400, an NADK-encoding gene in Synechocystis, functions as a growth repressor under light-activated heterotrophic growth conditions and light and dark cycle conditions in the presence of glucose. We show, via characterization of NAD(P)(H) content and enzyme activity, that NAD+ accumulation in slr0400-deficient mutant results in the unsuppressed activity of glycolysis and tricarboxylic acid (TCA) cycle enzymes. In determining whether Slr0400 functions as a typical NADK, we found that constitutive expression of slr0400 in an Arabidopsis nadk2-mutant background complements the pale-green phenotype. Moreover, to determine the physiological background behind the growth advantage of mutants lacking slr04000, we investigated the photobleaching phenotype of slr0400-deficient mutant under high-light conditions. Photosynthetic analysis found in the slr0400-deficient mutant resulted from malfunctions in the Photosystem II (PSII) photosynthetic machinery. Overall, our results suggest that NADP(H)/NAD(H) maintenance by slr0400 plays a significant role in modulating glycolysis and the TCA cycle to repress the growth rate and maintain the photosynthetic capacity.


Assuntos
Proteínas de Bactérias/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Synechocystis/crescimento & desenvolvimento , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Bactérias/genética , Teste de Complementação Genética , Luz , Mutação , Fenótipo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fotossíntese , Plantas Geneticamente Modificadas , Synechocystis/metabolismo , Synechocystis/fisiologia
19.
Plant Biotechnol (Tokyo) ; 38(4): 415-420, 2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35087306

RESUMO

A NAC domain transcription factor, VND-INTERACTING2 (VNI2) is originally isolated as an interacting protein with another NAC domain transcription factor, VASCULAR-RELATED NAC-DOMAIN7 (VND7), a master regulator of xylem vessel element differentiation. VND7 directly or indirectly induces expression of a number of genes associated with xylem vessel element differentiation, while VNI2 inhibits the transcriptional activation activities of VND7 by forming a protein complex. VNI2 is expressed at an earlier stage of xylem vessel element differentiation than VND7. Here, to investigate whether VND7 also affects VNI2, a transient expression assay was performed. We demonstrated that VND7 downregulated VNI2 expression. Other transcription factors involved in xylem vessel formation did not show the negative regulation of VNI2 expression. Rather, MYB83, a downstream target of VND7, upregulated VNI2 expression. By using the deletion series of the VNI2 promoter, a 400 bp region was identified as being responsible for downregulation by VND7. These data suggested that VND7 and VNI2 mutually regulate each other, and VNI2 expression is both positively and negatively regulated in the transcriptional cascade.

20.
Plant Signal Behav ; 16(1): 1844509, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33210985

RESUMO

Nicotinamide adenine dinucleotide (NAD)/NAD phosphate (NADPH) is essential for numerous redox reactions and serve as co-factors in multiple metabolic processes in all organisms. NAD kinase (NADK) is an enzyme involved in the synthesis of NADP+ from NAD+ and ATP. Arabidopsis NADK2 (AtNADK2) is a chloroplast-localizing enzyme that provides recipients of reducing power in photosynthetic electron transfer. When Arabidopsis plants were grown on MS medium supplemented with 5 mM MgSO4, an AtNADK2-overexpressing line exhibited higher glutathione and total sulfur accumulation than control plants. Metabolomic analysis of major amino acids and organic acids using capillary electrophoresis-mass spectrometry demonstrated that overexpression of AtNADK2 affected a range of metabolic processes in response to MgSO4 supplementation.


Assuntos
Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Cloroplastos/efeitos dos fármacos , Cloroplastos/metabolismo , Sulfato de Magnésio/farmacologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA