Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
NPJ Microgravity ; 8(1): 26, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35853938

RESUMO

The surface tension of a molten sample can be evaluated based on its resonant frequency with various levitation techniques. Under a 1-G condition, the use of levitation forces to counteract gravity will cause the levitated sample's resonant frequency to differ from that under microgravity. A mathematical relationship to correct for this deviation is not available for a sample levitated with aerodynamic levitation (ADL), which raises issues on the validity of surface tension measurements done with ADL. In this study, we compared the surface tension of molten Al2O3 obtained using the front tracking (FT) simulation method, the drop-bounce method with ADL, and the oscillating drop method with ADL. The drop-bounce method simulates microgravity by allowing the sample to free-fall over a period of tens of milliseconds. Based on the results of this comparison, we determined that the surface tension of molten materials measured with ground-based ADL with the oscillating drop method, calculated using the resonant frequency of the l=2 m=0 mode, only shows a small deviation from that obtained under microgravity.

2.
Heliyon ; 5(7): e02049, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31372532

RESUMO

Liquid ZrO2 is one of the most important materials involved in severe accident analysis of a light-water reactor. Despite its importance, the physical properties of liquid ZrO2 are scarcely reported. In particular, there are no experimental reports on the viscosity of liquid ZrO2. This is mainly due to the technical difficulties involved in the measurement of thermo-physical properties of liquid ZrO2, which has an extremely high melting point. To address this problem, an aerodynamic levitation technique was used in this study. The density of liquid ZrO2 was calculated from its mass and volume, estimated based on the recorded image of the sample. The viscosity was measured by a droplet oscillation technique. The density and viscosity of liquid ZrO2 at temperatures ranging from 2753 K to 3273 K, and 3170 K-3471 K, respectively, were successfully evaluated. The density of liquid ZrO2 was found to be 4.7 g/cm 3 at its melting point of 2988 K and decreased linearly with increasing temperature, and the viscosity of liquid ZrO2 was 13 mPa at its melting point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA