Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Reprod Dev ; 57(3): 403-8, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21343669

RESUMO

Previously, we showed that the exogenous expression of aquaporin 3 (AQP3), an aquaglyceroporin, improved the tolerance of mouse oocytes to vitrification with a glycerol-based solution. In the present study, we examined conditions suitable for the expression of AQP3 and the ability of vitrified oocytes to develop in vitro and in vivo after fertilization. After only partial remove of cumulus cells, immature mouse oocytes (germinal vesicle stage) were injected with 5, 10 or 20 pg of AQP3 cRNA and cultured for 12 h for maturation. When matured oocytes were vitrified with a glycerol-based solution, 57-61% survived regardless of the amount of cRNA injected (5-20 pg). By contrast, no oocytes injected with water (control) survived. When the zona pellucida was removed from the vitrified oocytes and the oocytes were then fertilized in vitro and cultured, the proportions that were fertilized and developed into blastocysts were higher when the amount of cRNA injected was 5 pg than 10-20 pg. When 16 blastocysts were transferred to a pseudopregnant mouse, 5 developed to term, demonstrating that oocytes vitrified after injection of AQP3 cRNA retained the ability to develop to term. The water-permeability of cRNA-injected oocytes was higher than that of control oocytes from the maturing stage to the 1-cell zygote stage, whereas glycerol-permeability was higher only at metaphase II. This indicates that AQP3 was expressed for a relatively short period of time. These results suggest that the transient expression of water/cryoprotectant channels is effective for cryopreserving cells that have low membrane-permeability, such as mammalian oocytes.


Assuntos
Aquaporina 3/biossíntese , Oócitos/crescimento & desenvolvimento , Vitrificação , Animais , Blastocisto/efeitos dos fármacos , Crioprotetores/farmacologia , Células do Cúmulo/efeitos dos fármacos , Feminino , Fertilização in vitro/métodos , Glicerol/farmacologia , Camundongos , Camundongos Endogâmicos ICR , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Zona Pelúcida/efeitos dos fármacos
2.
Cryobiology ; 53(2): 258-67, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16942765

RESUMO

It has been shown that aquaporin-3, a water channel, is expressed in mouse embryos. This type of aquaporin transports not only water but also neutral solutes, including cell-permeating cryoprotectants. Therefore, the expression of this channel may have significant influence on the survival of cryopreserved embryos. However, permeability coefficients of aquaporin-3 to cryoprotectants have not been determined except for glycerol. In addition, permeability coefficients under concentration gradients are important for developing and improving cryopreservation protocols. In this study, we examined the permeability of aquaporin-3 to various cryoprotectants using Xenopus oocytes. The permeability of aquaporin-3 to cryoprotectants was measured by the volume change of aquaporin-3 cRNA-injected oocytes in modified Barth's solution containing either 10% glycerol, 8% ethylene glycol, 10% propylene glycol, 1.5 M acetamide, or 9.5% DMSO (1.51-1.83 Osm/kg) at 25 degrees C. Permeability coefficients of aquaporin-3 for ethylene glycol and propylene glycol were 33.50 and 31.45 x 10(-3) cm/min, respectively, which were as high as the value for glycerol (36.13 x 10(-3) cm/min). These values were much higher than those for water-injected control oocytes (0.04-0.11 x 10(-3) cm/min). On the other hand, the coefficients for acetamide and DMSO were not well determined because the volume data were poorly fitted by the two parameter model, possibly because of membrane damage. To avoid this, the permeability for these cryoprotectants was measured under a low concentration gradient by suspending oocytes in aqueous solutions containing low concentrations of acetamide or DMSO dissolved in water (0.20 Osm/kg). The coefficient for acetamide (24.60 x 10(-3) cm/min) was as high as the coefficients for glycerol, ethylene glycol, and propylene glycol, and was significantly higher than the value for control (6.50 x 10(-3) cm/min). The value for DMSO (6.33 x 10(-3) cm/min) was relatively low, although higher than the value for control (0.79 x 10(-3) cm/min). This is the first reported observation of DMSO transport by aquaporin-3.


Assuntos
Aquaporina 3/metabolismo , Criopreservação/métodos , Crioprotetores/farmacologia , Oócitos/metabolismo , Animais , Feminino , Immunoblotting , Osmose , Permeabilidade , RNA Complementar/metabolismo , Ratos , Fatores de Tempo , Água/metabolismo , Xenopus
3.
Biol Reprod ; 74(4): 625-32, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16339044

RESUMO

The cryosensitivity of mammalian embryos depends on the stage of development. Because permeability to water and cryoprotectants plays an important role in cryopreservation, it is plausible that the permeability is involved in the difference in the tolerance to cryopreservation among embryos at different developmental stages. In this study, we examined the permeability to water and glycerol of mouse oocytes and embryos, and tried to deduce the pathway for the movement of water and glycerol. The water permeability (L(P), microm min(-1) atm(-1)) of oocytes and four-cell embryos at 25 degrees C was low (0.63-0.70) and its Arrhenius activation energy (E(a), kcal/mol) was high (11.6-12.3), which implies that the water permeates through the plasma membrane by simple diffusion. On the other hand, the L(p) of morulae and blastocysts was quite high (3.6-4.5) and its E(a) was quite low (5.1-6.3), which implies that the water moves through water channels. Aquaporin inhibitors, phloretin and p-(chloromercuri) benzene-sulfonate, reduced the L(p) of morulae significantly but not that of oocytes. By immunocytochemical analysis, aquaporin 3, which transports not only water but also glycerol, was detected in the morulae but not in the oocytes. Accordingly, the glycerol permeability (P(GLY), x 10(-3) cm/min) of oocytes was also low (0.01) and its E(a) was remarkably high (41.6), whereas P(GLY) of morulae was quite high (4.63) and its E(a) was low (10.0). Aquaporin inhibitors reduced the P(GLY) of morulae significantly. In conclusion, water and glycerol appear to move across the plasma membrane mainly by simple diffusion in oocytes but by facilitated diffusion through water channel(s) including aquaporin 3 in morulae.


Assuntos
Glicerol/metabolismo , Mórula/metabolismo , Oócitos/metabolismo , Água/metabolismo , Animais , Aquagliceroporinas/metabolismo , Aquaporina 3/metabolismo , Aquaporinas/antagonistas & inibidores , Embrião de Mamíferos/metabolismo , Feminino , Técnica Direta de Fluorescência para Anticorpo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Osmose , Permeabilidade
4.
Biol Reprod ; 68(1): 87-94, 2003 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-12493699

RESUMO

Successful cryopreservation of mammalian cells requires rapid transport of water and cryoprotective solutes across the plasma membrane. Aquaporin-3 is known as a water/solute channel that can transport water and neutral solutes such as glycerol. In this study we examined whether artificial expression of aquaporin-3 in mouse oocytes can improve water and glycerol permeability and oocyte survival after cryopreservation. Immature mouse oocytes were injected with aquaporin-3 cRNA and were cultured for 12 h. Then the hydraulic conductivity (L(P)) and glycerol permeability (P(GLY)) of matured oocytes were determined from the relative volume changes in 10% glycerol in PB1 medium at 25 degrees C. Mean +/- SD values of L(P) and P(GLY) of cRNA-injected oocytes (3.09 +/- 1.22 micro m min(-1) atm(-1) and 3.69 +/- 1.47 x 10(-3) cm/min, respectively; numbers of oocytes = 25) were significantly higher than those of noninjected oocytes (0.83 +/- 0.02 micro m min(-1) atm(-1) and 0.07 +/- 0.02 x 10(-3) cm/min, respectively; n = 13) and water-injected oocytes (0.87 +/- 0.10 micro m min(-1) atm(-1) and 0.08 +/- 0.02 x 10(-3) cm/min, respectively; n = 20). After cryopreservation in a glycerol-based solution, 74% of cRNA-injected oocytes (n = 27) survived as assessed by their morphological appearance, whereas none of the water-injected oocytes survived (n = 10). When cRNA-injected oocytes that survived cryopreservation were inseminated in vitro, the penetration rate was 40% (n = 48) and the cleavage rate was 31% (n = 70), showing that oocytes retain their ability to be fertilized. This is the first report to show that artificial expression of a water/solute channel in a cell improves its survival after cryopreservation. This approach may enable cryopreservation of cells that have been difficult to cryopreserve.


Assuntos
Aquaporinas/genética , Criopreservação/métodos , Oócitos , Animais , Aquaporina 3 , Aquaporinas/metabolismo , Sequência de Bases , Transporte Biológico Ativo , Permeabilidade da Membrana Celular , Sobrevivência Celular , DNA Complementar/genética , Feminino , Fertilização in vitro , Expressão Gênica , Glicerol/farmacocinética , Técnicas In Vitro , Masculino , Camundongos , Microinjeções , Oócitos/citologia , Oócitos/metabolismo , RNA Complementar/administração & dosagem , RNA Complementar/genética , Água/metabolismo
5.
J Biosci Bioeng ; 95(4): 419-20, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-16233432

RESUMO

We examined the effects of D- or L-amino acids on the stimulation of Brassica rapa roots. When 6.7 microM of D-methionine (D-Met) or L-methionine (L-Met) was applied, root hair numbers increased. L-Met (above concentration of 67.0 microM) caused the tip of roots to spiral. When CoCl2 (ethylene synthesis inhibitor) was added into the medium, L-Met lost its activity but COCl2 did not inhibit the bioactivity of D-Met.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...