Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 35(47): e2306402, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37867200

RESUMO

Polymer materials that show macroscopic deformation in response to external stimuli are feasible for novel soft actuators including microactuators. Incorporation of photochromic moieties, such as azobenzenes, into polymer networks enables macroscopic deformation under irradiation with light through photoisomerization. Under cryogenic conditions, however, it has been difficult to induce macroscopic deformation as polymers lose their soft nature due to the severe restrictions of molecular motions. Here, activation of molecular motions and macroscopic deformation in liquid nitrogen only with light for polymers containing photochromic moieties is reported. Photoinduced bending of polymer networks with normal azobenzenes in liquid nitrogen is enabled by preliminary UV irradiation at room temperature to produce cis-isomers. To realize photoinduced deformation directly in liquid nitrogen, polymer networks are functionalized with bridged azobenzenes, which exist as cis-isomers in thermodynamic equilibrium. The films with bridged azobenzenes exhibit reversible photoisomerization and bending upon irradiation with light in liquid nitrogen without the need of preliminary irradiation, implying that the change in conformation of polymer chains can be isothermally induced even under cryogenic conditions. Achievement of flexible motions under cryogenic conditions through isothermal processes will greatly expand the operating temperature range of soft actuators.

2.
Nat Commun ; 14(1): 4530, 2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37507380

RESUMO

Enantioselectivity of helical aggregation is conventionally directed either by its homochiral ingredients or by introduction of chiral catalysis. The fundamental question, then, is whether helical aggregation that consists only of achiral components can obtain enantioselectivity in the absence of chiral catalysis. Here, by exploiting enantiospecific interaction due to chiral-induced spin selectivity (CISS) that has been known to work to enantio-separate a racemic mixture of chiral molecules, we demonstrate the enantioselectivity in the assembly of mesoscale helical supramolecules consisting of achiral cobalt phthalocyanines. The helical nature in our supramolecules is revealed to be mesoscopically incorporated by dislocation-induced discretized twists, unlike the case of chiral molecules whose chirality are determined microscopically by chemical bond. The relevance of CISS effect in the discretized helical supramolecules is further confirmed by the appearance of spin-polarized current through the system. These observations mean that the application of CISS-based enantioselectivity is no longer limited to systems with microscopic chirality but is expanded to the one with mesoscopic chirality.

3.
Small ; 19(32): e2302714, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37154235

RESUMO

Chiral molecules have recently received renewed interest as highly efficient sources of spin-selective charge emission known as chiral-induced spin selectivity (CISS), which potentially offers a fascinating utilization of organic chiral materials in novel solid-state spintronic devices. However, a practical use of CISS remains far from completion, and rather fundamental obstacles such as (i) external controllability of spin, (ii) function durability, and (iii) improvement of spin-polarization efficiency have not been surmounted to date. In this study, these issues are addressed by developing a self-assembled monolayer (SAM) of overcrowded alkene (OCA)-based molecular motor. With this system, it is successfully demonstrated that the direction of spin polarization can be externally and repeatedly manipulated in an extremely stable manner by switching the molecular chirality, which is achieved by a formation of the covalent bonds between the molecules and electrode. In addition, it is found that a higher stereo-ordering architecture of the SAM of OCAs tailored by mixing them with simple alkanethiols considerably enhances the efficiency of spin polarization per a single OCA molecule. All these findings provide the creditable feasibility study for strongly boosting development of CISS-based spintronic devices that can simultaneously fulfill the controllability, durability, and high spin-polarization efficiency.

4.
Chemistry ; 29(43): e202300940, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37194414

RESUMO

The selective synthesis of nickel and copper complexes of 19-benzoyl-5,10,15-triphenyl-bilatrien-1-one (H2 TPBT) is reported, a molecule which crystallizes as a molecular helix of one-and-a-quarter which turns with a 5.7 Šradius and a 3.2 Špitch, and all 26 participating atoms are sp2 -hybridized. UV/vis, ECD, ESR and cyclic voltammetry experiments reveal a strong interaction between metal and ligand and partial radical character when copper is coordinated instead of nickel. Strong ECD absorption in the 800 nm range is found which, using TD-DFT calculations as well as literature spectra, is shown to be highly tunable both by metal coordination and variation of the aryl groups in the TPBT periphery. The radical character of the ligand in Cu(TPBT) enables rapid interconversion between (M)- and (P)-enantiomers, possibly via intermittent breakage of a Cu-N bond. The 19-benzoyl group kinetically stabilizes enantiopure (M/P)-Ni(TPBT). The results are interpreted with regard to the application as circularly polarized light (CPL) detectors as well as to the chirality-induced spin-selectivity (CISS) effect which is currently lacking a concise theoretical model.

5.
Phys Rev Lett ; 127(12): 126602, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34597079

RESUMO

A spin-polarized state is examined under charge current at room temperature without magnetic fields in chiral disilicide crystals NbSi_{2} and TaSi_{2}. We found that a long-range spin transport occurs over ten micrometers in these inorganic crystals. A distribution of crystalline grains of different handedness is obtained via location-sensitive electrical transport measurements. The sum rule holds in the conversion coefficient in the current-voltage characteristics. A diamagnetic nature of the crystals supports that the spin polarization is not due to localized electron spins but due to itinerant electron spins. A large difference in the strength of antisymmetric spin-orbit interaction associated with 4d electrons in Nb and 5d ones in Ta is oppositely correlated with that of the spin polarization. A robust protection of the spin polarization occurs over long distances in chiral crystals.

6.
J Phys Chem Lett ; 12(38): 9283-9292, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34542299

RESUMO

Heterohelicenes are potential materials in molecular electronics and optics because of their inherent chirality and various electronic properties originating from the introduced heteroatoms. In this work, we comprehensively investigated two kinds of double NO-hetero[5]helicenes composed of 12H-benzo[b]phenoxazine (BPO) and 13H-dibenzo[b,i]phenoxazine (DBPO). These helicenes exhibit good electron-donor properties reflecting the electron-rich character of their monomers and were demonstrated to work as p-type semiconductors. The enantiomers of these helicenes show the largest class of dissymmetry factors for circularly polarized luminescence (CPL) (|gCPL| > 10-2) among helicenes reported to date. Interestingly, the signs of CPL are opposite for BPO and DBPO double helicenes of the same helicity. The origin of the large gCPL values and the inversion of the CPL sign was addressed by analysis of the transition electronic dipole moments and transition magnetic dipole moments based on TD-DFT calculations.

7.
Sci Rep ; 11(1): 1332, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446711

RESUMO

Magnetic properties of Mott-Hubbard systems are generally dominated by strong antiferromagnetic interactions produced by the Coulomb repulsion of electrons. Although theoretical possibility of a ferromagnetic ground state has been suggested by Nagaoka and Penn as single-hole doping in a Mott insulator, experimental realization has not been reported more than half century. We report the first experimental possibility of such ferromagnetism in a molecular Mott insulator with an extremely light and homogeneous hole-doping in π-electron layers induced by net polarization of counterions. A series of Ni(dmit)2 anion radical salts with organic cations, where dmit is 1,3-dithiole-2-thione-4,5-dithiolate can form bi-layer structure with polarized cation layers. Heat capacity, magnetization, and ESR measurements substantiated the formation of a bulk ferromagnetic state around 1.0 K with quite soft magnetization versus magnetic field (M-H) characteristics in (Et-4BrT)[Ni(dmit)2]2 where Et-4BrT is ethyl-4-bromothiazolium. The variation of the magnitude of net polarizations by using the difference of counter cations revealed the systematic change of the ground state from antiferromagnetic one to ferromagnetic one. We also report emergence of metallic states through further doping and applying external pressures for this doping induced ferromagnetic state. The realization of ferromagnetic state in Nagaoka-Penn mechanism can paves a way for designing new molecules-based ferromagnets in future.

8.
Phys Rev Lett ; 124(16): 166602, 2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32383920

RESUMO

Chirality-induced spin transport phenomena are investigated at room temperature without magnetic fields in a monoaxial chiral dichalcogenide CrNb_{3}S_{6}. We found that spin polarization occurs in these chiral bulk crystals under a charge current flowing along the principal c axis. Such phenomena are detected as an inverse spin Hall signal which is induced on the detection electrode that absorbs polarized spin from the chiral crystal. The inverse response is observed when applying the charge current into the detection electrode. The signal sign reverses in the device with the opposite chirality. Furthermore, the spin signals are found over micrometer length scales in a nonlocal configuration. Such a robust generation and protection of the spin-polarized state is discussed based on a one-dimensional model with an antisymmetric spin-orbit coupling.

9.
Nat Commun ; 10(1): 2455, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31165729

RESUMO

Artificial molecular switches and machines that enable the directional movements of molecular components by external stimuli have undergone rapid advances over the past several decades. Particularly, overcrowded alkene-based artificial molecular motors are highly attractive from the viewpoint of chirality switching during rotational steps. However, the integration of these molecular switches into solid-state devices is still challenging. Herein, we present an example of a solid-state spin-filtering device that can switch the spin polarization direction by light irradiation or thermal treatment. This device utilizes the chirality inversion of molecular motors as a light-driven reconfigurable spin filter owing to the chiral-induced spin selectivity effect. Through this device, we found that the flexibility at the molecular scale is essential for the electrodes in solid-state devices using molecular machines. The present results are beneficial to the development of solid-state functionalities emerging from nanosized motions of molecular switches.

10.
Sci Adv ; 5(5): eaav7282, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31093527

RESUMO

A Mott insulator sometimes induces unconventional superconductivity in its neighbors when doped and/or pressurized. Because the phase diagram should be strongly related to the microscopic mechanism of the superconductivity, it is important to obtain the global phase diagram surrounding the Mott insulating state. However, the parameter available for controlling the ground state of most Mott insulating materials is one-dimensional owing to technical limitations. Here, we present a two-dimensional ground-state mapping for a Mott insulator using an organic field-effect device by simultaneously tuning the bandwidth and bandfilling. The observed phase diagram showed many unexpected features such as an abrupt first-order superconducting transition under electron doping, a recurrent insulating phase in the heavily electron-doped region, and a nearly constant superconducting transition temperature in a wide parameter range. These results are expected to contribute toward elucidating one of the standard solutions for the Mott-Hubbard model.

11.
Adv Mater ; 31(2): e1805715, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30407651

RESUMO

Superconducting (SC) devices are attracting renewed attention as the demands for quantum-information processing, meteorology, and sensing become advanced. The SC field-effect transistor (FET) is one of the elements that can control the SC state, but its variety is still limited. Superconductors at the strong-coupling limit tend to require a higher carrier density when the critical temperature (TC ) becomes higher. Therefore, field-effect control of superconductivity by a solid gate dielectric has been limited only to low temperatures. However, recent efforts have resulted in achieving n-type and p-type SC FETs based on organic superconductors whose TC exceed liquid He temperature (4.2 K). Here, a novel "ambipolar" SC FET operating at normally OFF mode with TC of around 6 K is reported. Although this is the second example of an SC FET with such an operation mode, the operation temperature exceeds that of the first example, or magic-angle twisted-bilayer graphene that operates at around 1 K. Because the superconductivity in this SC FET is of unconventional type, the performance of the present device will contribute not only to fabricating SC circuits, but also to elucidating phase transitions of strongly correlated electron systems.

12.
Phys Chem Chem Phys ; 20(3): 1321-1331, 2018 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149231

RESUMO

Stimulated by the discovery of high-temperature superconductivity in 1986, band-filling control of strongly correlated electron systems has been a persistent challenge over the past three decades in condensed matter science. In particular, recent efforts have been focused on electrostatic carrier doping of these materials, utilising field-effect transistor (FET) structures to find novel superconductivity. Our group found the first field-induced superconductivity in an organic-based material in 2013 and has been developing various types of superconducting organic FETs. In this perspective, we summarise our recent results on the development of novel superconducting organic FETs. In addition, this perspective describes novel functionality of superconducting FETs, such as strain- and light-responsivity. We believe that the techniques and knowledge described here will contribute to advances in future superconducting electronics as well as the understanding of superconductivity in strongly correlated electron systems.

13.
Adv Mater ; 29(33)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28661017

RESUMO

The presence of interface dipoles in self-assembled monolayers (SAMs) gives rise to electric-field effects at the device interfaces. SAMs of spiropyran derivatives can be used as photoactive interface dipole layer in field-effect transistors because the photochromism of spiropyrans involves a large dipole moment switching. Recently, light-induced p-type superconductivity in an organic Mott insulator, κ-(BEDT-TTF)2 Cu[N(CN)2 ]Br (κ-Br: BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) has been realized, thanks to the hole carriers induced by significant interface dipole variation in the spiropyran-SAM. This report explores the converse situation by designing a new type of spiropyran monolayer in which light-induced electron-doping into κ-Br and accompanying n-type superconducting transition have been observed. These results open new possibilities for novel electronics utilizing a photoactive SAMs, which can design not only the magnitude but also the direction of photoinduced electric-fields at the device interfaces.

14.
Nano Lett ; 17(2): 708-714, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28038313

RESUMO

We present the carrier transport properties in the vicinity of a doping-driven Mott transition observed at a field-effect transistor (FET) channel using a single crystal of the typical two-dimensional organic Mott insulator κ-(BEDT-TTF)2CuN(CN)2Cl (κ-Cl). The FET shows a continuous metal-insulator transition (MIT) as electrostatic doping proceeds. The phase transition appears to involve two-step crossovers, one in Hall measurement and the other in conductivity measurement. The crossover in conductivity occurs around the conductance quantum e2/h, and hence is not associated with "bad metal" behavior, which is in stark contrast to the MIT in half-filled organic Mott insulators or that in doped inorganic Mott insulators. Through in-depth scaling analysis of the conductivity, it is found that the above carrier transport properties in the vicinity of the MIT can be described by a high-temperature Mott quantum critical crossover, which is theoretically argued to be a ubiquitous feature of various types of Mott transitions.

15.
Nat Commun ; 7: 12356, 2016 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-27492864

RESUMO

It is widely recognized that the effect of doping into a Mott insulator is complicated and unpredictable, as can be seen by examining the Hall coefficient in high Tc cuprates. The doping effect, including the electron-hole doping asymmetry, may be more straightforward in doped organic Mott insulators owing to their simple electronic structures. Here we investigate the doping asymmetry of an organic Mott insulator by carrying out electric-double-layer transistor measurements and using cluster perturbation theory. The calculations predict that strongly anisotropic suppression of the spectral weight results in the Fermi arc state under hole doping, while a relatively uniform spectral weight results in the emergence of a non-interacting-like Fermi surface (FS) in the electron-doped state. In accordance with the calculations, the experimentally observed Hall coefficients and resistivity anisotropy correspond to the pocket formed by the Fermi arcs under hole doping and to the non-interacting FS under electron doping.

16.
Science ; 347(6223): 743-6, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25678657

RESUMO

Electric double layers (EDLs) of ionic liquids have been used in superconducting field-effect transistors as nanogap capacitors. Because of the freezing of the ionic motion below ~200 kelvin, modulations of the carrier density have been limited to the high-temperature regime. Here we observe carrier-doping-induced superconductivity in an organic Mott insulator with a photoinduced EDL based on a photochromic spiropyran monolayer. Because the spiropyran can isomerize reversibly between nonionic and zwitterionic isomers through photochemical processes, two distinct built-in electric fields can modulate the carrier density even at cryogenic conditions.

17.
Adv Mater ; 26(21): 3490-5, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24664491

RESUMO

A novel type of flexible organic field-effect transistor in which strain effects can be finely tuned continuously has been fabricated. In this novel device structure, electronic phases can be controlled both by "band-filling" and by "band-width" continuously. Finally, co-regulation of "band-filling" and "band-width" in the strongly-correlated organic material realize field-induced emergence of superconducting fractions at low temperature.

18.
J Phys Condens Matter ; 26(5): 055603, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24444590

RESUMO

We investigated a photoexcited state in the molecular conductor (BEDT-TTF)3(ClO4)2 (BEDT-TTF = bis(ethylenedithio)tetrathiafulvalene) with charge localization due to the electron-electron Coulomb interaction. Photocurrent induced by intramolecular excitation was observed in a charge-ordered insulating state. As a result, nonlinear photocurrent with a threshold of excitation light density was experimentally obtained. The threshold decreased as the temperature increased. This nonlinear photocurrent indicates a transition from an excitonic state to a free excited electronic state. The excitonic state below the threshold is formed by the long-range electron-electron Coulomb interaction. In the free excited electronic state above the threshold, high-density photoexcitation induces Coulomb screening, which results in exciton dissociation and a free electronic state.

19.
Nat Commun ; 4: 2379, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23974634

RESUMO

In state-of-the-art silicon devices, mobility of the carrier is enhanced by the lattice strain from the back substrate. Such an extra control of device performance is significant in realizing high-performance computing and should be valid for electric-field-induced superconducting (SC) devices, too. However, so far, the carrier density is the sole parameter for field-induced SC interfaces. Here we show an active organic SC field-effect transistor whose lattice is modulated by the strain from the substrate. The soft organic lattice allows tuning of the strain by a choice of the back substrate to make an induced SC state accessible at low temperature with a paraelectric solid gate. An active three-terminal Josephson junction device thus realized is useful both in advanced computing and in elucidating a direct connection between filling-controlled and bandwidth-controlled SC phases in correlated materials.

20.
Phys Rev Lett ; 110(22): 227401, 2013 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-23767745

RESUMO

Photoinduced effects caused by intramolecular excitation were investigated by simultaneous optical and transport measurement in two charge-ordered organic salts, (BEDT-TTF)3X2 (X=ReO4, ClO4) [BEDT-TTF=bis(ethylenedithio)tetrathiafulvalene]. Although the two salts have the same molecular (average) charge and arrangement, they showed different photoinduced effects. A photoinduced insulator-to-metal phase transition with a metastable charge order-melting state was observed in the ReO4 salt where the charge ordered state is associated with the lattice distortion. On the other hand, no photoinduced insulator-to-metal phase transition was noted in the ClO4 salt where the charge ordered state is not accompanied by the lattice distortion. This comparative study suggested that the lattice distortion plays a key role in the stabilization of the photoinduced phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...