Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(20): e202400060, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38263351

RESUMO

Superatoms are promising as new building block materials that can be designed by precise controlling of the constituent atoms. Stannaspherene (Sn12 2-) is a rigid cage-like cluster with icosahedral symmetry, for which one-atom encapsulation was theoretically expected and detected in the gas phase. Here, a single-atom introduction method into stannaspherene using a dendrimer template with polyvinylpyrrolidone (PVP) protection is demonstrated. This advanced solution-phase synthesis allows not only the selective doping of one atom into the cluster cage, but also enable further detail characterization of optical and magnetic properties that were not possible in the gas-phase synthesis. In other words, this liquid-phase synthesis method has enabled the adaptation of detailed analytical methods. In this study, FeSn12 was synthesized and characterized, revealing that a single Fe atom introduction in the Sn12 2- cage result in the appearance of near-infrared emission and enhancement in the magnetism.

2.
Chem Commun (Camb) ; 59(80): 11947-11950, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37668093

RESUMO

We present a partially-oxidised bimetallic Mo-Pt subnanoparticle (Mo4Pt8Ox) enabling thermally-driven CO2 hydrogenation to CO at room temperature and atmospheric pressure. A mechanistic study explained the full catalytic cycle of the reaction from CO2 activation to catalyst reactivation. DFT calculations revealed that alloying with Mo lowers the activation barrier by weakening the CO adsorption. This finding could be a first step for low-energy CO2 conversion.

3.
Dalton Trans ; 52(42): 15297-15302, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37496399

RESUMO

A chemical bottom-up approach for single-atomic-layered materials like graphene is attractive due to the possibility of introducing functions. This article includes the synthesis and properties of borophene-oxide and metalladithiolene layers, which are reported as inorganic materials. They have graphene-like two-dimensional networks that enable conjugated structures. Their atomically thin layers are also available by dissolution or synthetic methods. Their two-dimensional electronic features are evaluated from the activation energies for electrical conduction, focusing on the anisotropic features of borophene-oxide layers and the switching abilities of metalladithiolene layers.

4.
Angew Chem Int Ed Engl ; 61(40): e202209675, 2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35912811

RESUMO

Bonding dissimilar elements to provide synergistic effects is an effective way to improve the performance of metal catalysts. However, as the properties become more dissimilar, achieving synergistic effects effectively becomes more difficult due to phase separation. Here we describe a comprehensive study on how subnanoscale alloying is always effective for inter-elemental synergy. Thirty-six combinations of both bimetallic subnanoparticles (SNPs) and nanoparticles (NPs) were studied systematically using atomic-resolution imaging and catalyst benchmarking based on the hydrogen evolution reaction (HER). Results revealed that SNPs always produce greater synergistic effects than NPs, the greatest synergistic effect was found for the combination of Pt and Zr. The atomic-scale miscibility and the associated modulation of electronic states at the subnanoscale were much different from those at the nanoscale, which was observed by annular-dark-field scanning transmission electron microscopy (ADF-STEM) and X-ray photoelectron spectroscopy (XPS), respectively.

5.
Molecules ; 27(11)2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35684336

RESUMO

Superatoms are promising materials for their potential in elemental substitution and as new building blocks. Thus far, various synthesis methods of thiol-protected Au clusters including an Au25 superatom have been investigated. However, previously reported methods were mainly depending on the thermodynamic stability of the aimed clusters. In this report, a synthesis method for thiol-protected Au clusters using a dendrimers template is proposed. In this method, the number of Au atoms was controlled by the stepwise complexation feature of a phenylazomethine dendrimer. Therefore, synthesis speed was increased compared with the case without the dendrimer template. Hybridization for the Au25 superatoms was also achieved using the complexation control of metals.

6.
Chem Sci ; 13(20): 5813-5817, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685784

RESUMO

Synthesizing metal clusters with a specific number of atoms on a preparative scale for studying advanced properties is still a challenge. The dendrimer templated method is powerful for synthesizing size or atomicity controlled nanoparticles. However, not all atomicity is accessible with conventional dendrimers. A new tailor-made phenylazomethine dendrimer (DPA) with a limited number of coordination sites (n = 16) and a non-coordinating large poly-phenylene shell was designed to tackle this problem. The asymmetric dendron and adamantane core four substituted dendrimer (PPDPA16) were successfully synthesized. The coordination behavior confirmed the accumulation of 16 metal Lewis acids (RhCl3, RuCl3, and SnBr2) to PPDPA16. After the reduction of the complex, low valent metal nanoparticles with controlled size were obtained. The tailor-made dendrimer is a promising approach to synthesize a variety of metal clusters with desired atomicity.

7.
Nat Commun ; 13(1): 2968, 2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35624108

RESUMO

Traditionally, chemistry has been developed to obtain thermodynamically stable and isolable compounds such as molecules and solids by chemical reactions. However, recent developments in computational chemistry have placed increased importance on studying the dynamic assembly and disassembly of atoms and molecules formed in situ. This study directly visualizes the formation and dissociation dynamics of labile dimers and trimers at atomic resolution with elemental identification. The video recordings of many homo- and hetero-metallic dimers are carried out by combining scanning transmission electron microscopy (STEM) with elemental identification based on the Z-contrast principle. Even short-lived molecules with low probability of existence such as AuAg, AgCu, and AuAgCu are directly visualized as a result of identifying moving atoms at low electron doses.

8.
RSC Adv ; 12(6): 3238-3242, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35425399

RESUMO

Iron carbide clusters with near-sub-nanometer size have been synthesized by employing a tetraphenylmethane-cored phenylazomethine dendrimer generation 4 (TPM-DPAG4) as a molecular template. Magnetic measurements reveal that these iron carbide clusters exhibit a magnetization-field hysteresis loop at 300 K. The data indicate that these iron carbide clusters are ferromagnets at room temperature.

9.
Nat Commun ; 13(1): 1037, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210423

RESUMO

Borophene has been recently proposed as a next-generation two-dimensional material with promising electronic and optical properties. However, its instability has thus far limited its large-scale applications. Here, we investigate a liquid-state borophene analogue with an ordered layer structure derived from two-dimensional borophene oxide. The material structure, phase transition features and basic properties are revealed by using X-ray analysis, optical and electron microscopy, and thermal characterization. The obtained liquid crystal exhibits high thermal stability at temperatures up to 350 °C and an optical switching behaviour driven by a low voltage of 1 V.

10.
Angew Chem Int Ed Engl ; 61(8): e202114353, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35014142

RESUMO

Quasi-sub-nanomaterials (1-3 nm) have been predicted to exhibit unique properties originating from the gray structures considered both bulk solids and molecules, while their synthesis is extremely difficult. The present study describes a new template synthesis method for quasi-sub-nanosized materials using a combination of coordination chemistry and polymer chemistry. Utilizing self-assembly of guest basic phenylazomethine dendron units onto host acidic core units with six tritylium cations, the dendron-assembled supramolecules were constructed easily and quantitatively without costly techniques. This huge supramolecular capsule accumulating multiple acidic rhodium salts in its basic ligands enabled a precise synthesis of rhodium particles via formation of multinuclear complexes. The obtained particles (Rh84 , ≈1.5 nm) have particle sizes within 1-3 nm range and were larger than conventional sub-nanoparticles (Rh14 , ≈0.85 nm), therefore the precise template synthesis of quasi-sub-nanoparticles was successfully demonstrated.

11.
Acc Chem Res ; 54(24): 4486-4497, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34859668

RESUMO

Dendrimers, which are highly branched polymers and regarded as huge single molecules, are interesting substances from the aspect of not only polymer chemistry but also molecular chemistry. Various applications in materials science and life science have been investigated by taking advantage of the radially layered structures and intramolecular nanospaces of dendrimers. Most dendrimers have flexible structures that originate from their organic chains which contain many sp3-type atoms, while relatively rigid dendrimers composed only of sp2-type atoms have rarely been reported. It has been recently clarified that such rigid dendrimers exhibit a specific aromatic property not found in other materials. Dendritic phenylazomethines (DPAs), as one of the rigid dendrimers, have only sp2-type C and N atoms and possess a radially branched π-conjugation system in their own macromolecular chains. Such geometric and electronic structures heighten the electron density at the core of the dendrimer and induce an intramolecular potential gradient, which affords unique reactivities that lead to extraordinary functions. This unique property of the rigid dendrimers can be regarded as a new atypical electronic state based on radial aromatic chains not found in conventional aromatic compounds containing spherical aromaticity, Möbius aromaticity, metal aromaticity, and conductive polymers. Therefore, this as-yet-unknown characteristic is expected to contribute to the further development of fundamental and materials chemistry.In this Account, we highlight the rigid DPA dendrimers and their peculiar atomically precise and selective assembly behaviors that originate from the radial aromatic chains. One of the most noteworthy attainments based on the radial aromatic chains is the precise synthesis of a multimetallic multinuclear complex of a dendrimer containing a total of 13 elements. Next, we describe the electrochemical and catalytic functionalization of such multinuclear dendrimer complexes and the construction of supramolecular nanoarchitectures by the polymerization of DPAs. These complexes exhibit encapsulation-release switching of guests and additive-free catalytic ability similar to proteins and enzymes. Such selective and accurate control of the intramolecular assembly of guests and the intermolecular arrangement of hosts realized by the radial aromatic chains of dendrimers will enable supramolecular chemistry and biochemistry to be linked from a new aspect. In addition, the multimetallic multinuclear complexes of dendrimers afford a novel approach to precisely synthesize sub-nanoparticles with ultrasmall particle sizes (1 nm) that have been technically difficult to obtain by conventional nanotechnology. We discuss the method for the synthesis of these sub-nanoparticles with well-controlled atomicity and composition using DPA complexes as a template and recent advances to reveal their specific physical and chemical properties. These results suggest that the unique electronic states induced in such radial aromatics could play an important role in the development of next-generation chemistry.

12.
Sci Adv ; 7(32)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34362728

RESUMO

Microscopic observation of single molecules is a rapidly expanding field in chemistry and differs from conventional characterization techniques that require a large number of molecules. One of such form of single-molecule microscopy is high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM), which is especially suitable for coordination compounds because of its atomic number-dependent contrast. However, to date, single-molecule observations using HAADF-STEM has limited to simple planar molecules. In the present study, we demonstrate a direct structural investigation of nonplanar dendronized polynuclear Ir complexes with subnanometer resolution using Ir as an atomic label. Decreasing the electron dose to the dendrimer complexes is critical for the single-molecule observation. A comparison with simulated STEM images of conformational isomers is performed to determine the most plausible conformation. Our results enlarge the potential of electron microscopic observation to realize structural analysis of coordination macromolecules, which has been impossible with conventional methods.

13.
Molecules ; 26(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443684

RESUMO

Direct detection and characterisation of small materials are fundamental challenges in analytical chemistry. A particle composed of dozens of metallic atoms, a so-called subnano-particle (SNP), and a single-atom catalyst (SAC) are ultimate analysis targets in terms of size, and the topic is now attracting increasing attention as innovative frontier materials in catalysis science. However, characterisation techniques for the SNP and SAC adsorbed on substrates requires sophisticated and large-scale analytical facilities. Here we demonstrate the development of an ultrasensitive, laboratory-scale, vibrational spectroscopic technique to characterise SNPs and SACs. The fine design of nano-spatial local enhancement fields generated by the introduction of anisotropic stellate-shaped signal amplifiers expands the accessibility of small targets on substrates into evanescent electromagnetic fields, achieving not only the detection of isolated small targets but also revealing the effects of intermolecular/interatomic interactions within the subnano configuration under actual experimental conditions. Such a development of "in situ subnano spectroscopy" will facilitate a comprehensive understanding of subnano and SAC science.

14.
Chemistry ; 27(33): 8410, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-34050583

RESUMO

Invited for the cover of this issue is Kimihisa Yamamoto and co-workers at Tokyo Institute of Technology and International Christian University. The image depicts enhanced reactivity of the copper oxide subnanoparticles under low-temperature conditions. Read the full text of the article at 10.1002/chem.202100508.

15.
Chemistry ; 27(33): 8452-8456, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33884681

RESUMO

Subnanoparticles (SNPs) with sizes of approximately 1 nm are attractive for enhancing the catalytic performance of transition metals and their oxides. Such SNPs are of particular interest as redox-active catalysts in selective oxidation reactions. However, the electronic states and oxophilicity of copper oxide SNPs are still a subject of debate in terms of their redox properties during oxidation reactions for hydrocarbons. In this work, in situ X-ray absorption fine structure (XAFS) measurements of Cu28 Ox SNPs, which were prepared by using a dendritic phenylazomethine template, during temperature-programmed reduction (TPR) with H2 achieved lowering of the temperature (T50 =138 °C) reported thus far for the CuII →CuI reduction reaction because of Cu-O bond elongation in the ultrasmall copper oxide particles.

16.
Small ; 17(19): e2008127, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33760388

RESUMO

Molybdenum oxycarbide clusters are novel nanomaterials that exhibit attractive catalytic activity; however, the methods for their production are currently very restrictive. This work represents a new strategy for the creation of near-subnanometer size molybdenum oxycarbide clusters on multilayer graphene. To adsorb Mo-based polyoxometalates of the type [PMo12 O40 ]3- as a precursor for Mo oxycarbide clusters, the novel tripodal-phenyl cation N,N,N-tri(4-phenylbutyl)-N-methylammonium ([TPBMA]+ ) is synthesized. [TPBMA]+ exhibits superior adsorption on multilayer graphene compared to commercially available cations such as tetrabutylammonium ([nBu4 N]+ ) and tetraphenylphosphonium ([PPh4 ]+ ). Using [TPBMA]+ as an anchor, highly dispersed precursor clusters (diameter: 1.0 ± 0.2 nm) supported on multilayer graphene are obtained, as confirmed by high-resolution scanning transmission electron microscopy. Remarkably, this new material achieves the catalytic reduction of CO2 to selectively produce CO (≈99.9%) via the reverse water-gas-shift reaction, by applying carbothermal hydrogen reduction to generate Mo oxycarbide clusters in situ.

17.
Nat Rev Chem ; 5(5): 338-347, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-37117837

RESUMO

For decades, chemists have explored cluster compounds according to theoretical models that have proved too simplistic to accurately predict cluster properties, stabilities and functions. By incorporating molecular symmetry into existing cluster models, we can better study real polyatomic molecules and have new guidelines for their design. This symmetry-adapted cluster model allows us to discover substances that shatter the conventional notion of clusters. Theoretical predictors will point to the viability of new clusters, whose syntheses can be realized with parallel advances in experimental methods. This Perspective describes these modern experimental and theoretical strategies for cluster design and how they may give rise to new fields in cluster chemistry.

18.
Angew Chem Int Ed Engl ; 60(9): 4551-4554, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33200557

RESUMO

There has been controversy surrounding the roles of the metal core (metal-metal interaction) and the shell (metal-ligand interaction) in photoluminescence of ligand-protected metal nanoclusters. We have discovered aggregation-induced room-temperature phosphorescence of a platinum-thiolate complex and its silver ion inclusion complex (a silver-doped platinum sub-nanocluster). The inclusion of silver ion boosted the photoluminescent quantum yield by 18 times. Photophysical measurements indicate that the rate of nonradiative decay was slower for the silver-doped platinum sub-nanocluster. DFT calculations showed that the LUMO, which had the main contribution from Ag s-orbital and Pt d-orbitals, played a critical role in suppressing the structural distortion at the excited state. This work will hopefully stimulate more research on designing strategies based on molecular orbitals of atomicity-precise luminescent multimetallic nanoclusters.

19.
Inorg Chem ; 59(21): 15690-15695, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33085886

RESUMO

Carbothermal hydrogen reduction (CHR) is a unique dry chemical process used to fabricate metals and carbides on carbon supports. In this study, a stepwise CHR of WCl6 on a graphite support is demonstrated for the first time. Powder X-ray diffraction studies revealed that, at 773 K, metallic tungsten nanoparticles are produced, whereas, at 1073 K, the metastable W2C phase is generated rather than the thermodynamically stable WC phase. X-ray photoelectron spectroscopy and X-ray absorption near edge structure studies showed that the chemical state of the W nanoparticles simultaneously exhibits metallic W(∼0) and carbide W(δ+) character. The obtained results suggest that, although electronic interactions exist between the metallic W atoms and the graphite support, the body-centered cubic structure of the metallic tungsten is maintained, confirmed by the extended X-ray absorption fine structure. In addition, high-resolution scanning transmission electron microscopy observations revealed that the W nanoparticles exhibit a thin flattened shape on the support. These results support the notion that the mechanism for the formation of the W nanoparticles during the CHR is influenced by the electronic interactions between the W nanoparticles and the graphite support. Our work thus suggests that the combination of early-transition-metal atoms and carbon-based supports would afford modulatable electronic systems though the electronic interactions.

20.
J Am Chem Soc ; 142(45): 19078-19084, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-32897063

RESUMO

Subnanoparticles (SNPs) exhibit unique properties and functions due to their extremely small particle sizes which extend into the quantum scale. Although the synthesis of SNPs requiring precise control of atomicity and composition has not been accomplished, we recently developed an atom-hybridization method (AHM) that realizes such atomic-level control using a macromolecular template. As a next step in the quest for innovative quantum materials, the practical creation of functional subnanomaterials will become a central subject. In this study, we established a new screening technique for functional SNPs by focusing on the simple indium-tin binary system with sequential compositions using the latest AHM. As a result, it was revealed that a thermodynamically unstable indium species was produced only at a certain composition leading to a durable luminescent function. Such a phenomenon in subnanosized substances will play an important role in the development of the as-yet-unknown field of quantum materials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...