Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Clin Pharmacol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101567

RESUMO

Roux-en-Y gastric bypass (RYGB) involves creating a small stomach pouch, bypassing part of the small intestine, and rerouting the digestive tract. These alterations can potentially change the drug exposure and response. Our primary aim was to assess the impact of RYGB on the pharmacokinetics of simvastatin lactone (SV) and its active metabolite, simvastatin hydroxy acid (SVA). Ultimately, we aimed to optimize dosing for this understudied population by employing a population pharmacokinetic-pharmacodynamic link approach. The study comprised patients who had undergone RYGB surgery and individuals without a previous history of RYGB. All participants received a single oral dose of simvastatin. Plasma concentration data were analyzed with a nonlinear mixed-effect modeling approach. A parent-metabolite model with first-order absorption, 2-compartments for SV and 1-compartment for SVA, linear elimination, and enterohepatic circulation best described the data. The model was linked to the turnover pharmacodynamic model to describe the SVA inhibition on LDL-cholesterol production. Our simulations indicated that following RYGB surgery, the exposure to SV and SVA decreased by 40%. Consequently, for low-intensity statin patients, we recommend increasing the dose from 10 to 20 mg in post-RYGB patients to maintain a comparable response to that of non-operated subjects. Moderate-intensity statin patients should require increasing doses to 40 or 60 mg or the addition of a non-statin medication to achieve similar therapeutic outcomes. In conclusion, individuals post-RYGB exhibit diminished exposure to SV and may benefit from increasing the dose or adjunctive therapy with non-statin drugs to attain equivalent responses and mitigate potential adverse events.

2.
Basic Clin Pharmacol Toxicol ; 124(3): 266-272, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30192429

RESUMO

Gabapentin (GAB) is eliminated unchanged in urine, and organic cation transporters (OCT2 and OCTN1) have been shown to play a role in GAB renal excretion. This prospective clinical study aimed to evaluate the genetic polymorphisms effect on GAB pharmacokinetic (PK) variability using a population pharmacokinetic approach. Data were collected from 53 patients with chronic pain receiving multiple doses of GAB. Patients were genotyped for SLC22A2 c.808G>T and SLC22A4 c.1507C>T polymorphisms. Both polymorphisms' distribution followed the Hardy-Weinberg equilibrium. An one-compartment model with first-order absorption and linear elimination best described the data. The absorption rate constant, volume of distribution, and clearance estimated were 0.44 h-1 , 86 L, and 17.3 × (estimated glomerular filtration ratio/89.58)1.04  L/h, respectively. The genetic polymorphism SLC22A4 c.1507C>T did not have a significant influence on GAB absorption, distribution or elimination. Due to the low minor allelic frequency of SLC22A2 c.808G>T, further studies require higher number of participants to confirm its effect on GAB renal elimination. In conclusion, GAB clinical pharmacokinetics are strongly influenced by renal function and absorption process, but not by the OCTN1 (SLC22A4 c.1507C>T) polymorphism.


Assuntos
Dor Crônica/tratamento farmacológico , Dor Crônica/genética , Gabapentina/farmacocinética , Proteínas de Transporte de Cátions Orgânicos/genética , Transportador 2 de Cátion Orgânico/genética , Adulto , Idoso , Analgésicos/farmacocinética , Dor Crônica/metabolismo , Feminino , Frequência do Gene , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Transportador 2 de Cátion Orgânico/metabolismo , Farmacogenética , Polimorfismo de Nucleotídeo Único , Estudos Prospectivos , Simportadores
3.
Amino Acids ; 48(10): 2363-74, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27388480

RESUMO

The translation elongation factor eIF5A is conserved through evolution and is necessary to rescue the ribosome during translation elongation of polyproline-containing proteins. Although the site of eIF5A binding to the ribosome is known, no systematic analysis has been performed so far to determine the important residues on the surface of eIF5A required for ribosome binding. In this study, we used clustered charged-to-alanine mutagenesis and structural modeling to address this question. We generated four new mutants of yeast eIF5A: tif51A-4, tif51A-6, tif51A-7 and tif51A-11, and complementation analysis revealed that tif51A-4 and tif51A-7 could not sustain cell growth in a strain lacking wild-type eIF5A. Moreover, the allele tif51A-4 also displayed negative dominance over wild-type eIF5A. Both in vivo GST-pulldowns and in vitro fluorescence anisotropy demonstrated that eIF5A from mutant tif51A-7 exhibited an importantly reduced affinity for the ribosome, implicating the charged residues in cluster 7 as determinant features on the eIF5A surface for contacting the ribosome. Notably, modified eIF5A from mutant tif51A-4, despite exhibiting the most severe growth phenotype, did not abolish ribosome interactions as with mutant tif51A-7. Taking into account the modeling eIF5A + 80S + P-tRNA complex, our data suggest that interactions of eIF5A with ribosomal protein L1 are more important to stabilize the interaction with the ribosome as a whole than the contacts with P-tRNA. Finally, the ability of eIF5A from tif51A-4 to bind to the ribosome while potentially blocking physical interaction with P-tRNA could explain its dominant negative phenotype.


Assuntos
Mutagênese , Fatores de Iniciação de Peptídeos , Proteínas de Ligação a RNA , Proteínas Ribossômicas , Ribossomos , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fatores de Iniciação de Peptídeos/química , Fatores de Iniciação de Peptídeos/genética , Fatores de Iniciação de Peptídeos/metabolismo , Ligação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Ribossomos/química , Ribossomos/genética , Ribossomos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fator de Iniciação de Tradução Eucariótico 5A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA