Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(8)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38385511

RESUMO

Recently developed locally scaled self-interaction correction (LSIC) is a one-electron SIC method that, when used with a ratio of kinetic energy densities (zσ) as iso-orbital indicator, performs remarkably well for both thermochemical properties as well as for barrier heights overcoming the paradoxical behavior of the well-known Perdew-Zunger self-interaction correction (PZSIC) method. In this work, we examine how well the LSIC method performs for the delocalization error. Our results show that both LSIC and PZSIC methods correctly describe the dissociation of H2+ and He2+ but LSIC is overall more accurate than the PZSIC method. Likewise, in the case of the vertical ionization energy of an ensemble of isolated He atoms, the LSIC and PZSIC methods do not exhibit delocalization errors. For the fractional charges, both LSIC and PZSIC significantly reduce the deviation from linearity in the energy vs number of electrons curve, with PZSIC performing superior for C, Ne, and Ar atoms while for Kr they perform similarly. The LSIC performs well at the endpoints (integer occupations) while substantially reducing the deviation. The dissociation of LiF shows both LSIC and PZSIC dissociate into neutral Li and F but only LSIC exhibits charge transfer from Li+ to F- at the expected distance from the experimental data and accurate ab initio data. Overall, both the PZSIC and LSIC methods reduce the delocalization errors substantially.

2.
J Chem Phys ; 159(15)2023 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-37861122

RESUMO

An Achille's heel of lower-rung density-functional approximations is that the highest-occupied-molecular-orbital energy levels of anions, known to be stable or metastable in nature, are often found to be positive in the worst case or above the lowest-unoccupied-molecular-orbital levels on neighboring complexes that are not expected to accept charge. A trianionic example, [Cr(C2O4)3]3-, is of interest for constraining models linking Cr isotope ratios in rock samples to oxygen levels in Earth's atmosphere over geological timescales. Here we describe how crowd sourcing can be used to carry out self-consistent Fermi-Löwdin-Orbital-Self-Interaction corrected calculations (FLOSIC) on this trianion in solution. The calculations give a physically correct description of the electronic structure of the trianion and water. In contrast, uncorrected local density approximation (LDA) calculations result in approximately half of the anion charge being transferred to the water bath due to the effects of self-interaction error. Use of group-theory and the intrinsic sparsity of the theory enables calculations roughly 125 times faster than our initial implementation in the large N limit reached here. By integrating charge density densities and Coulomb potentials over regions of space and analyzing core-level shifts of the Cr and O atoms as a function of position and functional, we unambiguously show that FLOSIC, relative to LDA, reverses incorrect solute-solvent charge transfer in the trianion-water complex. In comparison to other functionals investigated herein, including Hartree-Fock and the local density approximation, the FLOSIC Cr 1s eigenvalues provide the best agreement with experimental core ionization energies.

3.
J Chem Phys ; 158(6): 064114, 2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36792502

RESUMO

Recently proposed local self-interaction correction (LSIC) method [Zope et al., J. Chem. Phys. 151, 214108 (2019)] is a one-electron self-interaction-correction (SIC) method that uses an iso-orbital indicator to apply the SIC at each point in space by scaling the exchange-correlation and Coulomb energy densities. The LSIC method is exact for the one-electron densities, also recovers the uniform electron gas limit of the uncorrected density functional approximation, and reduces to the well-known Perdew-Zunger SIC (PZSIC) method as a special case. This article presents the self-consistent implementation of the LSIC method using the ratio of Weizsäcker and Kohn-Sham kinetic energy densities as an iso-orbital indicator. The atomic forces as well as the forces on the Fermi-Löwdin orbitals are also implemented for the LSIC energy functional. Results show that LSIC with the simplest local spin density functional predicts atomization energies of the AE6 dataset better than some of the most widely used generalized-gradient-approximation (GGA) functional [e.g., Perdew-Burke-Ernzerhof (PBE)] and barrier heights of the BH6 database better than some of the most widely used hybrid functionals (e.g., PBE0 and B3LYP). The LSIC method [a mean absolute error (MAE) of 0.008 Å] predicts bond lengths of a small set of molecules better than the PZSIC-LSDA (MAE 0.042 Å) and LSDA (0.011 Å). This work shows that accurate results can be obtained from the simplest density functional by removing the self-interaction-errors using an appropriately designed SIC method.

4.
J Phys Chem A ; 126(12): 1923-1935, 2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35302373

RESUMO

We examine the role of self-interaction error (SIE) removal on the evaluation of magnetic exchange coupling constants. In particular, we analyze the effect of scaling down the self-interaction correction (SIC) for three nonempirical density functional approximations (DFAs) namely, the local spin density approximation, the Perdew-Burke-Ernzerhof generalized gradient approximation, and the recent SCAN family of meta-GGA functionals. To this end, we employ three one-electron SIC methods: Perdew-Zunger SIC [Perdew, J. P.; Zunger, A. Phys. Rev. B, 1981, 23, 5048.], the orbitalwise scaled SIC method [Vydrov, O. A. et al. J. Chem. Phys. 2006, 124, 094108.], and the recent local scaling method [Zope, R. R. et al. J. Chem. Phys. 2019, 151, 214108.]. We compute the magnetic exchange coupling constants using the spin projection and nonprojection approaches for sets of molecules composed of dinuclear and polynuclear H···He models, organic radical molecules, and chlorocuprate and compare these results against accurate theories and experiment. Our results show that for the systems that mainly consist of single-electron regions, PZSIC performs well, but for more complex organic systems and the chlorocuprates, an overcorrecting tendency of PZSIC combined with the DFAs utilized in this work is more pronounced, and in such cases, LSIC with kinetic energy density ratio performs better than PZSIC. Analysis of the results in terms of SIC corrections to the density and to the total energy shows that both density and energy correction are required to obtain an improved prediction of magnetic exchange couplings.

5.
J Chem Phys ; 156(1): 014306, 2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-34998352

RESUMO

We study the effect of self-interaction errors on the barrier heights of chemical reactions. For this purpose, we use the well-known Perdew-Zunger self-interaction-correction (PZSIC) [J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981)] as well as two variations of the recently developed, locally scaled self-interaction correction (LSIC) [Zope et al., J. Chem. Phys. 151, 214108 (2019)] to study the barrier heights of the BH76 benchmark dataset. Our results show that both PZSIC and especially the LSIC methods improve the barrier heights relative to the local density approximation (LDA). The version of LSIC that uses the iso-orbital indicator z as a scaling factor gives a more consistent improvement than an alternative version that uses an orbital-dependent factor w based on the ratio of orbital densities to the total electron density. We show that LDA energies evaluated using the self-consistent and self-interaction-free PZSIC densities can be used to assess density-driven errors. The LDA reaction barrier errors for the BH76 set are found to contain significant density-driven errors for all types of reactions contained in the set, but the corrections due to adding SIC to the functional are much larger than those stemming from the density for the hydrogen transfer reactions and of roughly equal size for the non-hydrogen transfer reactions.

6.
J Chem Phys ; 155(6): 064109, 2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34391355

RESUMO

Density functional theory (DFT) and beyond-DFT methods are often used in combination with photoelectron spectroscopy to obtain physical insights into the electronic structure of molecules and solids. The Kohn-Sham eigenvalues are not electron removal energies except for the highest occupied orbital. The eigenvalues of the highest occupied molecular orbitals often underestimate the electron removal or ionization energies due to the self-interaction (SI) errors in approximate density functionals. In this work, we adapt and implement the density-consistent effective potential method of Kohut, Ryabinkin, and Staroverov [J. Chem. Phys. 140, 18A535 (2014)] to obtain SI-corrected local effective potentials from the SI-corrected Fermi-Löwdin orbitals and density in the Fermi-Löwdin orbital self-interaction correction scheme. The implementation is used to obtain the density of states (photoelectron spectra) and HOMO-LUMO gaps for a set of molecules and polyacenes. Good agreement with experimental values is obtained compared to a range of SI uncorrected density functional approximations.

7.
J Chem Phys ; 155(1): 014106, 2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34241401

RESUMO

We investigate the electronic structure of a planar mononuclear Cu-based molecule [Cu(C6H4S2)2]z in two oxidation states (z = -2, -1) using density-functional theory (DFT) with Fermi-Löwdin orbital (FLO) self-interaction correction (SIC). The dianionic Cu-based molecule was proposed to be a promising qubit candidate. Self-interaction error within approximate DFT functionals renders severe delocalization of electron and spin densities arising from 3d orbitals. The FLO-SIC method relies on optimization of Fermi-Löwdin orbital descriptors (FODs) with which localized occupied orbitals are constructed to create SIC potentials. Starting with many initial sets of FODs, we employ a frozen-density loop algorithm within the FLO-SIC method to study the Cu-based molecule. We find that the electronic structure of the molecule remains unchanged despite somewhat different final FOD configurations. In the dianionic state (spin S = 1/2), FLO-SIC spin density originates from the Cu d and S p orbitals with an approximate ratio of 2:1, in quantitative agreement with multireference calculations, while in the case of SIC-free DFT, the orbital ratio is reversed. Overall, FLO-SIC lowers the energies of the occupied orbitals and, in particular, the 3d orbitals unhybridized with the ligands significantly, which substantially increases the energy gap between the highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital (LUMO) compared to SIC-free DFT results. The FLO-SIC HOMO-LUMO gap of the dianionic state is larger than that of the monoanionic state, which is consistent with experiment. Our results suggest a positive outlook of the FLO-SIC method in the description of magnetic exchange coupling within 3d-element-based systems.

8.
J Chem Phys ; 154(11): 114305, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752350

RESUMO

Density functional approximations (DFAs) are known to significantly overestimate the polarizabilities of long chain-like molecules. We study the static electric dipole polarizabilities and the vertical ionization potentials of polyacenes from benzene to pentacene using the Fermi-Löwdin orbital-based self-interaction corrected (FLOSIC) density functional method. The orbital by orbital self-interaction correction corrects for the overestimation tendency of DFAs. The polarizabilities calculated with FLOSIC-DFA are, however, overly corrected. We also tested the recently developed locally scaled self-interaction correction (LSIC) method on polyacenes. The local-scaling method applies full SIC in the one-electron regions and restores the proper behavior of the SIC exchange-correlation functionals in the uniform density limit. The results show that LSIC removes the overcorrection tendency of the FLOSIC-DFA and produces results that are in excellent agreement with reference coupled-cluster single and double values. The vertical ionization potentials with LSIC also show good agreement with available experimental values.

9.
J Chem Phys ; 154(9): 094105, 2021 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33685179

RESUMO

The Perdew-Zunger self-interaction correction (PZ-SIC) improves the performance of density functional approximations for the properties that involve significant self-interaction error (SIE), as in stretched bond situations, but overcorrects for equilibrium properties where SIE is insignificant. This overcorrection is often reduced by local scaling self-interaction correction (LSIC) of the PZ-SIC to the local spin density approximation (LSDA). Here, we propose a new scaling factor to use in an LSIC-like approach that satisfies an additional important constraint: the correct coefficient of the atomic number Z in the asymptotic expansion of the exchange-correlation (xc) energy for atoms. LSIC and LSIC+ are scaled by functions of the iso-orbital indicator zσ, which distinguishes one-electron regions from many-electron regions. LSIC+ applied to the LSDA works better for many equilibrium properties than LSDA-LSIC and the Perdew, Burke, and Ernzerhof generalized gradient approximation (GGA), and almost close to the strongly constrained and appropriately normed (SCAN) meta-GGA. LSDA-LSIC and LSDA-LSIC+, however, fail to predict interaction energies involving weaker bonds, in sharp contrast to their earlier successes. It is found that more than one set of localized SIC orbitals can yield a nearly degenerate energetic description of the same multiple covalent bond, suggesting that a consistent chemical interpretation of the localized orbitals requires a new way to choose their Fermi orbital descriptors. To make a locally scaled down SIC to functionals beyond the LSDA requires a gauge transformation of the functional's energy density. The resulting SCAN-sdSIC, evaluated on SCAN-SIC total and localized orbital densities, leads to an acceptable description of many equilibrium properties including the dissociation energies of weak bonds.

10.
Phys Chem Chem Phys ; 23(3): 2406-2418, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33459302

RESUMO

A recently proposed local self-interaction correction (LSIC) method [Zope et al., J. Chem. Phys., 2019, 151, 214108] when applied to the simplest local density approximation provides a significant improvement over standard Perdew-Zunger SIC (PZSIC) for both equilibrium properties such as total or atomization energies as well as properties involving stretched bond such as barrier heights. The method uses an iso-orbital indicator to identify the single-electron regions. To demonstrate the LSIC method, Zope et al. used the ratio zσ of von Weizsäcker τWσ and total kinetic energy densities τσ, (zσ = τWσ/τσ) as a scaling factor to scale the self-interaction correction. The present work further explores the LSIC method using a ratio of orbital and spin densities as a simpler scaling factor in place of the ratio of kinetic energy densities. We compute a wide array of both, equilibrium and non-equilibrium properties using LSIC and orbital scaling methods using this simple scaling factor and compare them with previously reported results. Our study shows that LSIC with the simple scaling factor performs better than PZSIC, with results comparable to those obtained by LSIC(zσ) for most properties, but has slightly larger errors than LSIC(zσ). Furthermore, we study the binding energies of small water clusters using both scaling factors. Our results show that LSIC with zσ has limitations in predicting the cluster binding energies of weakly bonded systems due to the inability of zσ to distinguish weakly bonded regions from slowly varying density regions. LSIC when used with the density ratio as a scaling factor, on the other hand, provides a good description of water cluster binding energies, thus highlighting the appropriate choice of the iso-orbital indicator.

11.
J Chem Phys ; 153(16): 164304, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33138422

RESUMO

We studied the effect of self-interaction error (SIE) on the static dipole polarizabilities of water clusters modeled with three increasingly sophisticated, non-empirical density functional approximations (DFAs), viz., the local spin density approximation (LDA), the Perdew-Burke-Ernzerhof (PBE) generalized-gradient approximation (GGA), and the strongly constrained and appropriately normed (SCAN) meta-GGA, using the Perdew-Zunger self-interaction-correction (PZ-SIC) energy functional in the Fermi-Löwdin orbital SIC framework. Our results show that while all three DFAs overestimate the cluster polarizabilities, the description systematically improves from LDA to PBE to SCAN. The self-correlation free SCAN predicts polarizabilities quite accurately with a mean absolute error (MAE) of 0.53 bohr3 with respect to coupled cluster singles and doubles (CCSD) values. Removing SIE using PZ-SIC correctly reduces the DFA polarizabilities, but overcorrects, resulting in underestimated polarizabilities in SIC-LDA, SIC-PBE, and SIC-SCAN. Finally, we applied a recently proposed locally scaled SIC (LSIC) method using a quasi self-consistent scheme and using the kinetic energy density ratio as an iso-orbital indicator. The results show that the LSIC polarizabilities are in excellent agreement with mean absolute errors of 0.08 bohr3 for LSIC-LDA and 0.06 bohr3 for LSIC-PBE with most recent CCSD polarizabilities. Likewise, the ionization energy estimates as absolute of highest occupied energy eigenvalue predicted by LSIC are also in excellent agreement with CCSD(T) ionization energies with MAEs of 0.4 eV for LSIC-LDA and 0.06 eV for LSIC-PBE. The LSIC-LDA predictions of ionization energies are comparable to the reported GW ionization energies, while the LSIC-PBE ionization energies are more accurate than the reported GW results.

12.
Phys Chem Chem Phys ; 22(32): 18060-18070, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32760934

RESUMO

Recent regularization of the SCAN meta-GGA functional (rSCAN) has simplified the numerical complexities of the SCAN functional, alleviating SCAN's stringent demand on the numerical integration grids to some extent. The regularization of rSCAN, however, results in the breaking of some constraints such as the uniform electron gas limit, the slowly varying density limit, and coordinate scaling of the iso-orbital indicator. Here, we assess the effects of regularization on the electronic, structural, vibrational, and magnetic properties of molecules by comparing the SCAN and rSCAN predictions. The properties studied include atomic energies, atomization energies, ionization potentials, electron affinities, barrier heights, infrared intensities, dissociation and reaction energies, spin moments of molecular magnets, and isomer ordering of water clusters. Our results show that rSCAN requires less dense numerical grids and gives very similar results to those of SCAN for all properties examined with the exception of atomization energies, which are worsened in rSCAN. We also examine the performance of self-interaction-corrected (SIC) rSCAN with respect to SIC-SCAN using the Perdew-Zunger (PZ) SIC method. The PZSIC method uses orbital densities to compute one-electron self-interaction errors and places an even more stringent demand on numerical grids. Our results show that SIC-rSCAN gives marginally better performance than SIC-SCAN for almost all properties studied in this work with numerical grids that are on average half or less as dense as that needed for SIC-SCAN.

13.
J Chem Phys ; 152(21): 214109, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32505149

RESUMO

The Perdew-Zunger (PZ) self-interaction correction (SIC) was designed to correct the one-electron limit of any approximate density functional for the exchange-correlation (xc) energy, while yielding no correction to the exact functional. Unfortunately, it spoils the slowly varying (in space) limits of the uncorrected approximate functionals, where those functionals are right by construction. The right limits can be restored by locally scaling down the energy density of the PZ SIC in many-electron regions, but then a spurious correction to the exact functional would be found unless the self-Hartree and exact self-xc terms of the PZ SIC energy density were expressed in the same gauge. Only the local density approximation satisfies the same-gauge condition for the energy density, which explains why the recent local-scaling SIC is found here to work excellently for atoms and molecules only with this basic approximation and not with the more advanced generalized gradient approximations (GGAs) and meta-GGAs, which lose the Hartree gauge via simplifying integrations by parts. The transformation of energy density that achieves the Hartree gauge for the exact xc functional can also be applied to approximate functionals. Doing so leads to a simple scaled-down self-interaction correction that is typically much more accurate than PZ SIC in tests for many molecular properties (including equilibrium bond lengths). The present work unambiguously shows that the largest errors of PZ SIC applied to standard functionals at three levels of approximation can be removed by restoring their correct slowly varying density limits. It also confirms the relevance of these limits to atoms and molecules.

14.
J Chem Phys ; 152(17): 174112, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32384855

RESUMO

The Perdew-Zunger (PZ) method provides a way to remove the self-interaction (SI) error from density functional approximations on an orbital by orbital basis. The PZ method provides significant improvements for the properties such as barrier heights or dissociation energies but results in over-correcting the properties well described by SI-uncorrected semi-local functional. One cure to rectify the over-correcting tendency is to scale down the magnitude of SI-correction of each orbital in the many-electron region. We have implemented the orbitalwise scaled down SI-correction (OSIC) scheme of Vydrov et al. [J. Chem. Phys. 124, 094108 (2006)] using the Fermi-Löwdin SI-correction method. After validating the OSIC implementation with previously reported OSIC-LSDA results, we examine its performance with the most successful non-empirical SCAN meta-GGA functional. Using different forms of scaling factors to identify one-electron regions, we assess the performance of OSIC-SCAN for a wide range of properties: total energies, ionization potentials and electron affinities for atoms, atomization energies, dissociation and reaction energies, and reaction barrier heights of molecules. Our results show that OSIC-SCAN provides superior results than the previously reported OSIC-LSDA, -PBE, and -TPSS results. Furthermore, we propose selective scaling of OSIC (SOSIC) to remove its major shortcoming that destroys the -1/r asymptotic behavior of the potentials. The SOSIC method gives the highest occupied orbital eigenvalues practically identical to those in PZSIC and unlike OSIC provides bound atomic anions even with larger powers of scaling factors. SOSIC compared to PZSIC or OSIC provides a more balanced description of total energies and barrier heights.

15.
Phys Chem Chem Phys ; 22(7): 3789-3799, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-31898696

RESUMO

Accurate description of the excess charge in water cluster anions is challenging for standard semi-local and (global) hybrid density functional approximations (DFAs). Using the recent unitary invariant implementation of the Perdew-Zunger self-interaction correction (SIC) method using Fermi-Löwdin orbitals, we assess the effect of self-interaction error on the vertical detachment energies of water cluster anions with the local spin density approximation (LSDA), Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation, and the strongly constrained and appropriately normed (SCAN) meta-GGA functionals. Our results show that for the relative energies of isomers with respect to reference CCSD(T) values, the uncorrected SCAN functional has the smallest deviation of 21 meV, better than that for the MP2 method. The performance of SIC-SCAN is comparable to that of MP2 and is better than SIC-LSDA and SIC-PBE, but it reverses the ordering of the two lowest isomers for water hexamer anions. Removing self interaction error (SIE) corrects the tendency of LSDA, PBE, and SCAN to over-bind the extra electron. The vertical detachment energies (VDEs) of water cluster anions, obtained from the total energy differences of corresponding anion and neutral clusters, are significantly improved by removing self-interaction and are better than the hybrid B3LYP functional, but fall short of MP2 accuracy. Removing SIE results in substantial improvement in the position of the eigenvalue of the extra electron. The negative of the highest occupied eigenvalue after SIC provides an excellent approximation to the VDE, especially for SIC-PBE where the mean absolute error with respect to CCSD(T) is only 17 meV, the best among all approximations compared in this work.

16.
J Chem Phys ; 151(21): 214108, 2019 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-31822080

RESUMO

Self-interaction (SI) error, which results when exchange-correlation contributions to the total energy are approximated, limits the reliability of many density functional approximations. The Perdew-Zunger SI correction (PZSIC), when applied in conjunction with the local spin density approximation (LSDA), improves the description of many properties, but overall, this improvement is limited. Here, we propose a modification to PZSIC that uses an iso-orbital indicator to identify regions where local SICs should be applied. Using this local-scaling SIC (LSIC) approach with LSDA, we analyze predictions for a wide range of properties including, for atoms, total energies, ionization potentials, and electron affinities and, for molecules, atomization energies, dissociation energy curves, reaction energies, and reaction barrier heights. LSIC preserves the results of PZSIC-LSDA for properties where it is successful and provides dramatic improvements for many of the other properties studied. Atomization energies calculated using LSIC are better than those of the Perdew, Burke, and Ernzerhof generalized gradient approximation (GGA) and close to those obtained with the strongly constrained and appropriately normed meta-GGA. LSIC also restores the uniform gas limit for the exchange energy that is lost in PZSIC-LSDA. Further performance improvements may be obtained by an appropriate combination or modification of the local scaling factor and the particular density functional approximation.

17.
J Chem Phys ; 151(17): 174106, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-31703485

RESUMO

Spurious electron self-interaction in density functional approximations (DFAs) can lead to inaccurate predictions of charge transfer in heteronuclear molecules that manifest as errors in calculated electrostatic dipoles. Here, we show the magnitude of these errors on dipoles computed for a diverse set of 47 molecules taken from the recent benchmark study of Hait and Head-Gordon [J. Chem. Theory Comput. 14, 1969 (2018)]. We compare the results of Perdew-Wang local spin density approximation (PW92), Perdew-Burke-Ernzerhof (PBE) generalized gradient approximation (GGA), and strongly constrained and appropriately normed (SCAN) meta-GGA dipole calculations, along with those of their respective self-interaction-corrected (SIC) counterparts, to reference values from accurate wave function-based methods. The SIC calculations were carried out using the Fermi-Löwdin orbital (FLO-SIC) approach. We find that correcting for self-interaction generally increases the degree of charge transfer, thereby increasing the size of calculated dipole moments. The FLO-SIC-PW92 and FLO-SIC-PBE dipoles are in better agreement with reference values than their uncorrected DFA counterparts, particularly for strongly ionic molecules where significant improvement is seen. Applying FLO-SIC to SCAN does not improve dipole values overall. We also show that removing self-interaction improves the description of the dipole for stretched-bond geometries and recovers the physically correct separated atom limit of zero dipole. Finally, we find that the best agreement between the FLO-SIC-DFA and reference dipoles occurs when the molecular geometries are optimized using the FLO-SIC-DFA.

18.
J Chem Phys ; 151(15): 154105, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31640373

RESUMO

Despite the success of density functional approximations (DFAs) in describing the electronic properties of many-electron systems, the most widely used approximations suffer from self-interaction errors (SIEs) that limit their predictive power. Here, we describe the effects of removing SIE from the strongly constrained and appropriately normed (SCAN) meta-generalized gradient approximation using the Fermi-Löwdin Orbital Self-Interaction Correction (FLOSIC) method. FLOSIC is a size-extensive implementation of the Perdew-Zunger self-interaction correction (PZ-SIC) formalism. We find that FLOSIC-SCAN calculations require careful treatment of numerical details and an integration grid that yields reliable accuracy with this approach. We investigate the performance of FLOSIC-SCAN for predicting a wide array of properties and find that it provides better results than FLOSIC-LDA and FLOSIC-PBE in nearly all cases. It also gives better predictions than SCAN for orbital energies and dissociation energies where self-interaction effects are known to be important, but total energies and atomization energies are made worse. For these properties, we also investigate the use of the self-consistent FLOSIC-SCAN density in the SCAN functional and find that this DFA@FLOSIC-DFA approach yields improved results compared to pure, self-consistent SCAN calculations. Thus, FLOSIC-SCAN provides improved results over the parent SCAN functional in cases where SIEs are dominant, and even when they are not, if the SCAN@FLOSIC-SCAN method is used.

19.
J Chem Phys ; 150(17): 174102, 2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067878

RESUMO

Semilocal approximations to the density functional for the exchange-correlation energy of a many-electron system necessarily fail for lobed one-electron densities, including not only the familiar stretched densities but also the less familiar but closely related noded ones. The Perdew-Zunger (PZ) self-interaction correction (SIC) to a semilocal approximation makes that approximation exact for all one-electron ground- or excited-state densities and accurate for stretched bonds. When the minimization of the PZ total energy is made over real localized orbitals, the orbital densities can be noded, leading to energy errors in many-electron systems. Minimization over complex localized orbitals yields nodeless orbital densities, which reduce but typically do not eliminate the SIC errors of atomization energies. Other errors of PZ SIC remain, attributable to the loss of the exact constraints and appropriate norms that the semilocal approximations satisfy, suggesting the need for a generalized SIC. These conclusions are supported by calculations for one-electron densities and for many-electron molecules. While PZ SIC raises and improves the energy barriers of standard generalized gradient approximations (GGAs) and meta-GGAs, it reduces and often worsens the atomization energies of molecules. Thus, PZ SIC raises the energy more as the nodality of the valence localized orbitals increases from atoms to molecules to transition states. PZ SIC is applied here, in particular, to the strongly constrained and appropriately normed (SCAN) meta-GGA, for which the correlation part is already self-interaction-free. This property makes SCAN a natural first candidate for a generalized SIC.

20.
J Comput Chem ; 40(6): 820-825, 2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30589095

RESUMO

We derived, implemented, and thoroughly tested the complete analytic expression for atomic forces, consisting of the Hellmann-Feynman term and the Pulay correction, for the Fermi-Löwdin orbital self-interaction correction (FLO-SIC) method. Analytic forces are shown to be numerically accurate through an extensive comparison to forces obtained from finite differences. Using the analytic forces, equilibrium structures for a small set of molecules were obtained. This work opens the possibility of routine self-interaction free geometrical relaxations of molecules using the FLO-SIC method. © 2018 Wiley Periodicals, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...