Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 32: 101347, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36131851

RESUMO

The affinity for K+ of silkworm Na+/K+-ATPase, which is composed of α and ß subunits, is remarkably lower than that of mammalian Na+/K+-ATPase, with a slightly higher affinity for Na+. Because the α subunit had more than 70% identity to the mammalian α subunit in the amino acid sequence, whereas the ß subunit, a glycosylated protein, had less than 30% identity to the mammalian ß subunit, it was suggested that the ß subunit was involved in the affinities for Na+ and K+ of Na+/K+-ATPase. To confirm this hypothesis, we examined whether replacing the silkworm ß subunit with the mammalian ß subunit affected the affinities for Na+ and K+ of Na+/K+-ATPase. Cloned silkworm α and cloned rat ß1 were co-expressed in BM-N cells, a cultured silkworm ovary-derived cell lacking endogenous Na+/K+-ATPase, to construct a hybrid Na+/K+-ATPase, in which the silkworm ß subunit was replaced with the rat ß1 subunit. The hybrid Na+/K+-ATPase increased the affinity for K+ by 4.1-fold and for Na+ by 0.65-fold compared to the wild-type one. Deglycosylation of the silkworm ß subunit did not affect the K+ affinity. These results support the involvement of the ß subunit in the Na+ and K+ affinities of Na+/K+-ATPase.

2.
Mol Cell Neurosci ; 121: 103754, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35842170

RESUMO

The involvement of secretory pathways and Golgi dysfunction in neuronal cells during Alzheimer's disease progression is poorly understood. Our previous overexpression and knockdown studies revealed that the intracellular protein level of Syntaxin-5, an endoplasmic reticulum-Golgi soluble N-ethylmaleimide-sensitive factor-attachment protein receptor (SNARE), modulates beta-amyloid precursor protein processing in neuronal cells. We recently showed that changes in endogenous Syntaxin-5 protein expression occur under stress induction. Syntaxin-5 was upregulated by endoplasmic reticulum stress but was degraded by Caspase-3 during apoptosis in neuronal cells. In addition, we showed that sustained endoplasmic reticulum stress promotes Caspase-3-dependent apoptosis during the later phase of the endoplasmic reticulum stress response in NG108-15 cells. In this study, to elucidate the consequences of secretory pathway dysfunction in beta-amyloid precursor protein processing that lead to neuronal cell death, we examined the effect of various stresses on endoplasmic reticulum-Golgi SNARE expression and beta-amyloid precursor protein processing. By using compounds to disrupt Golgi function, we show that Golgi stress promotes upregulation of the endoplasmic reticulum-Golgi SNARE Syntaxin-5, and prolonged stress causes Caspase-3-dependent apoptosis. Golgi stress induced intracellular beta-amyloid precursor protein accumulation and a concomitant decrease in total amyloid-beta production. We also examined the protective effect of the chemical chaperone 4-phenylbutylate on changes in amyloid-beta production and the activation of Caspase-3 induced by endoplasmic reticulum and Golgi stress. The compound alleviated the increase in the amyloid-beta 1-42/amyloid-beta 1-40 ratio induced by endoplasmic reticulum and Golgi stress. Furthermore, 4-phenylbutylate could rescue Caspase-3-dependent apoptosis induced by prolonged organelle stress. These results suggest that organelle stress originating from the endoplasmic reticulum and Golgi has a substantial impact on the amyloidogenic processing of beta-amyloid precursor protein and Caspase-3-dependent apoptosis, leading to neuronal cell death.


Assuntos
Precursor de Proteína beta-Amiloide , Proteínas SNARE , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Apoptose , Caspase 3/metabolismo , Complexo de Golgi/metabolismo , Proteínas Qa-SNARE/genética , Proteínas Qa-SNARE/metabolismo , Proteínas Qa-SNARE/farmacologia , Proteínas SNARE/metabolismo , Proteínas SNARE/farmacologia , Regulação para Cima
3.
Biochem Biophys Res Commun ; 614: 56-62, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35567944

RESUMO

The human Golgi/secretory pathway Ca2+,Mn2+-ATPase 1 (hSPCA1) transports Ca2+ and Mn2+ into the Golgi lumen. Studies of the biological functions of hSPCA1 are limited by a lack of selective pharmacological tools for SPCA1 inhibition. The aim of this study was therefore to identify compounds that specifically inhibit hSPCA1 activity. We found that five 1,3-thiazole derivatives exhibited inhibitory action towards the ATP hydrolysis activity of hSPCA1a in a concentration-dependent manner. Among the derivatives tested, compound 1 was the most potent, completely inhibiting hSPCA1a activity with a half-maximal inhibition (IC50) value of 0.8 µM. Compound 1 also partially inhibited the activity of another Ca2+,Mn2+-ATPase (hSPCA2) and Ca2+-ATPase (rSERCA1a), but had no effect on Na+,K+-ATPase or H+,K+-ATPase. Treatment of HeLa cells with compound 1 led to fragmentation of the Golgi ribbon into smaller stacks. In addition, compound 1 mobilized intracellular Ca2+ in HeLa cells that had been pre-treated with thapsigargin. Therefore, based on its selectivity and potency, compound 1 may be a valuable tool with which to further explore the role of SPCA1 in cellular processes.


Assuntos
ATPases Transportadoras de Cálcio , Via Secretória , Adenosina Trifosfatases/metabolismo , Cálcio/metabolismo , Células HeLa , Humanos , Tiazóis/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...