Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Sci Rep ; 14(1): 10650, 2024 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724532

RESUMO

Avoiding fatigue is a long-standing challenge in both healthy and diseased individuals. Establishing objective standard markers of fatigue is essential to evaluate conditions in spatiotemporally different locations and individuals and identify agents to fight against fatigue. Herein, we introduced a novel method for evaluating fatigue using nervous system markers (including dopamine, adrenaline, and noradrenaline), various cytokine levels (such as interleukin [IL]-1ß, tumor necrosis factor [TNF]-α, IL-10, IL-2, IL-5 and IL-17A), and oxidative stress markers (such as diacron-reactive oxygen metabolites [d-ROMs] and biological antioxidant potential [BAP]) in a rat fatigue model. Using this method, the anti-fatigue effects of methyl dihydrojasmonate (MDJ) and linalool, the fragrance/flavor compounds used in various products, were assessed. Our method evaluated the anti-fatigue effects of the aforementioned compounds based on the changes in levels of the nerves system markers, cytokines, and oxidative stress markers. MDJ exerted more potent anti-fatigue effects than linalool. In conclusion, the reported method could serve as a useful tool for fatigue studies and these compounds may act as effective therapeutic agents for abrogating fatigue symptoms.


Assuntos
Monoterpenos Acíclicos , Citocinas , Modelos Animais de Doenças , Fadiga , Estresse Oxidativo , Animais , Estresse Oxidativo/efeitos dos fármacos , Monoterpenos Acíclicos/farmacologia , Ratos , Fadiga/tratamento farmacológico , Fadiga/metabolismo , Citocinas/metabolismo , Masculino , Ciclopentanos/farmacologia , Antioxidantes/farmacologia , Biomarcadores , Monoterpenos/farmacologia , Oxilipinas/farmacologia , Ratos Sprague-Dawley
2.
Diabetes Ther ; 15(6): 1403-1416, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38653904

RESUMO

INTRODUCTION: The effects of dipeptidyl peptidase-4 inhibitors (DPP-4is) and sodium-glucose cotransporter 2 inhibitors (SGLT2is) on quality of life (QOL) and treatment satisfaction have not been directly compared. This sub-analysis of a randomized-controlled trial with an SGLT2i, luseogliflozin, and DPP-4is compared their effects on QOL and treatment satisfaction of patients. METHODS: This study recruited 623 patients with type 2 diabetes mellitus who were drug-naïve or treated with antidiabetic agents other than SGLT2is and DPP-4is. The patients were randomized into luseogliflozin or DPP-4i group and followed for 52 weeks. This sub-analysis assessed QOL and treatment satisfaction using Oral Hypoglycemic Agent Questionnaire (OHA-Q) version 2 in the drug-naïve subgroup who were drug-naïve at baseline and with monotherapy with luseogliflozin or DPP-4i throughout the observation period (256 patients) at 24 and 52 weeks and in the add-on subgroup who were treated with OHAs other than SGLT2is and DPP-4is (204 patients) at baseline, 24 and 52 weeks. RESULTS: In the drug-naïve subgroup, total (50.8 ± 8.2 in luseogliflozin group and 53.1 ± 10.0 in DPP-4i group, p = 0.048) and somatic symptom scores (22.4 ± 5.0 in luseogliflozin group and 24.4 ± 5.8 in DPP-4i group, p = 0.005) at 52 weeks (but not at 24 weeks) were significantly higher in DPP-4i group than in luseogliflozin group. In add-on subgroup, changes in total (3.3 ± 7.8 in luseogliflozin group and 0.9 ± 7.6 in DPP-4i group, p = 0.030) and treatment convenience (1.2 ± 3.9 in luseogliflozin group and - 0.6 ± 4.2 in DPP-4i group, p = 0.002) from baseline to 24 weeks (but not at 52 weeks) were significantly greater in luseogliflozin group than in DPP-4i group. The QOL related to safety or glycemic control was comparable between the groups. CONCLUSIONS: Physicians should pay attention to side effects of SGLT2is to maintain the patients' QOL when SGLT2is are initiated or added-on. Add-on of luseogliflozin increased patients' QOL more than DPP-4is. Considering patients' QOL and treatment satisfaction is important for selecting SGLT2is or DPP-4is. TRIAL REGISTRATION: UMIN000030128 and jRCTs031180241.

3.
Front Oncol ; 14: 1371342, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595825

RESUMO

Background: Our earlier research revealed that the secreted lysyl oxidase-like 4 (LOXL4) that is highly elevated in triple-negative breast cancer (TNBC) acts as a catalyst to lock annexin A2 on the cell membrane surface, which accelerates invasive outgrowth of the cancer through the binding of integrin-ß1 on the cell surface. However, whether this machinery is subject to the LOXL4-mediated intrusive regulation remains uncertain. Methods: Cell invasion was assessed using a transwell-based assay, protein-protein interactions by an immunoprecipitation-Western blotting technique and immunocytochemistry, and plasmin activity in the cell membrane by gelatin zymography. Results: We revealed that cell surface annexin A2 acts as a receptor of plasminogen via interaction with S100A10, a key cell surface annexin A2-binding factor, and S100A11. We found that the cell surface annexin A2/S100A11 complex leads to mature active plasmin from bound plasminogen, which actively stimulates gelatin digestion, followed by increased invasion. Conclusion: We have refined our understanding of the role of LOXL4 in TNBC cell invasion: namely, LOXL4 mediates the upregulation of annexin A2 at the cell surface, the upregulated annexin 2 binds S100A11 and S100A10, and the resulting annexin A2/S100A11 complex acts as a receptor of plasminogen, readily converting it into active-form plasmin and thereby enhancing invasion.

4.
Antioxid Redox Signal ; 40(10-12): 595-597, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38386512

RESUMO

Recent studies have provided evidence for the direct binding of thioredoxin-1 (TRX1) to a component of inflammasome complex NLR family pyrin domain containing 1 (NLRP-1). This interaction suggests a potential role for TRX1 in the regulation of the NLRP-1 inflammasome. Furthermore, the NLRP-3 inflammasome is known to bind TRX1 and its inhibitor, TRX-binding protein-2/TRX-interacting protein/vitamin D3 upregulated protein-1 (TBP2/TXNIP/VDUP-1). This binding forms a redox-sensitive complex, termed the "Redoxisome," as described previously. However, the specific functions of NLRP-1 within the redoxisome complex remain undefined. Antioxid. Redox Signal. 40, 595-597.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Oxirredução , Tiorredoxinas/metabolismo
5.
J Oral Biosci ; 65(4): 334-346, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37716425

RESUMO

OBJECTIVE: We previously reported that dickkopf WNT signaling pathway inhibitor 3 (DKK3) expression is correlated with poorer prognosis in head and neck squamous cell carcinoma (HNSCC). Here we investigated DKK3 expression by using The Cancer Genome Atlas (TCGA) public database and bioinformatic analyses. METHODS: We used the RNA sequence data and divided the tumor samples into "DKK3-high" and "DKK3-low" groups according to median DKK3 expression. The correlations between DKK3 expression and the clinical data were investigated. Differentially expressed genes (DEGs) were detected using DESEq2 and analyzed by ShinyGO 0.77. A gene set enrichment analysis (GSEA) was also performed using GSEA software. The DEGs were also analyzed with TargetMine to establish the protein-protein interaction (PPI) network. RESULTS: DKK3 expression was significantly increased in cancer samples, and a high DKK3 expression was significantly associated with shorter overall survival. We identified 854 DEGs, including 284 up-regulated and 570 down-regulated. Functional enrichment analyses revealed several Gene Ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with extracellular matrix remodeling. The PPI network identified COL8A1, AGTR1, FN1, P4HA3, PDGFRB, and CEP126 as the key genes. CONCLUSIONS: These results suggested the cancer-promoting ability of DKK3, the expression of which is a promising prognostic marker and therapeutic target for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/genética , Regulação Neoplásica da Expressão Gênica/genética , Prognóstico , Biologia Computacional/métodos , Bases de Dados Genéticas , Pró-Colágeno-Prolina Dioxigenase/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
6.
Diabetes Ther ; 14(9): 1517-1535, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37410308

RESUMO

INTRODUCTION: Evidence of a direct comparison between dipeptidyl-peptidase 4 inhibitors (DPP-4is) and sodium-glucose cotransporter 2 inhibitors (SGLT2is) remains lacking, and no clear treatment strategy or rationale has been established using these drugs. This study aimed to compare the overall efficacy and safety of DPP-4is and the SGLT2i luseogliflozin in patients with type 2 diabetes mellitus (T2DM). METHODS: Patients with T2DM who had not used antidiabetic agents or who had used antidiabetic agents other than SGLT2is and DPP-4is were enrolled in the study after written informed consent had been obtained. The enrolled patients were subsequently randomly assigned to either the luseogliflozin or DPP-4i group and followed up for 52 weeks. The primary (composite) endpoint was the proportion of patients who showed improvement in ≥ 3 endpoints among the following five endpoints from baseline to week 52: glycated hemoglobin (HbA1c), weight, estimated glomerular filtration rate (eGFR), systolic blood pressure, and pulse rate. RESULTS: A total of 623 patients were enrolled in the study and subsequently randomized to either the luseogliflozin or DPP-4i groups. The proportion of patients who showed improvement in ≥ 3 endpoints at week 52 was significantly higher in the luseogliflozin group (58.9%) than in the DPP-4i group (35.0%) (p < 0.001). When stratified by body mass index (BMI) (< 25 or ≥ 25 kg/m2) or age (< 65 or ≥ 65 years), regardless of BMI or age, the proportion of patients who achieved the composite endpoint was significantly higher in the luseogliflozin group than in the DPP-4i group. Hepatic function and high-density lipoprotein-cholesterol were also significantly improved in the luseogliflozin group compared with the DPP-4i group. The frequency of non-serious/serious adverse events did not differ between the groups. CONCLUSION: This study showed the overall efficacy of luseogliflozin compared with DPP-4is over the mid/long term, regardless of BMI or age. The results suggest the importance of assessing multiple aspects regarding the effects of diabetes management. TRIAL REGISTRATION NUMBER: jRCTs031180241.

7.
Front Oncol ; 13: 1142907, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091157

RESUMO

Background: LOX family members are reported to play pivotal roles in cancer. Unlike their enzymatic activities in collagen cross-linking, their precise cancer functions are unclear. We revealed that LOXL4 is highly upregulated in breast cancer cells, and we thus sought to define an unidentified role of LOXL4 in breast cancer. Methods: We established the MDA-MB-231 sublines MDA-MB-231-LOXL4 mutCA and -LOXL4 KO, which stably overexpress mutant LOXL4 that loses its catalytic activity and genetically ablates the intrinsic LOXL4 gene, respectively. In vitro and in vivo evaluations of these cells' activities of cancer outgrowth were conducted by cell-based assays in cultures and an orthotopic xenograft model, respectively. The new target (s) of LOXL4 were explored by the MS/MS analytic approach. Results: Our in vitro results revealed that both the overexpression of mutCA and the KO of LOXL4 in cells resulted in a marked reduction of cell growth and invasion. Interestingly, the lowered cellular activities observed in the engineered cells were also reflected in the mouse model. We identified a novel binding partner of LOXL4, i.e., annexin A2. LOXL4 catalyzes cell surface annexin A2 to achieve a cross-linked multimerization of annexin A2, which in turn prevents the internalization of integrin ß-1, resulting in the locking of integrin ß-1 on the cell surface. These events enhance the promotion of cancer cell outgrowth. Conclusions: LOXL4 has a new role in breast cancer progression that occurs via an interaction with annexin A2 and integrin ß-1 on the cell surface.

8.
Front Oncol ; 13: 1142886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36910659

RESUMO

Background: EMT has been proposed to be a crucial early event in cancer metastasis. EMT is rigidly regulated by the action of several EMT-core transcription factors, particularly ZEB1. We previously revealed an unusual role of ZEB1 in the S100A8/A9-mediated metastasis in breast cancer cells that expressed ZEB1 at a significant level and showed that the ZEB1 was activated on the MCAM-downstream pathway upon S100A8/A9 binding. ZEB1 is well known to require Zn2+ for its activation based on the presence of several Zn-finger motifs in the transcription factor. However, how Zn2+-binding works on the pleiotropic role of ZEB1 through cancer progression has not been fully elucidated. Methods: We established the engineered cells, MDA-MB-231 MutZEB1 (MDA-MutZEB1), that stably express MutZEB1 (ΔZn). The cells were then evaluated in vitro for their invasion activities. Finally, an RNA-Seq analysis was performed to compare the gene alteration profiles of the established cells comprehensively. Results: MDA-MutZEB1 showed a significant loss of the EMT, ultimately stalling the invasion. Inclusive analysis of the transcription changes after the expression of MutZEB1 (ΔZn) in MDA-MB-231 cells revealed the significant downregulation of LOX family genes, which are known to play a critical role in cancer metastasis. We found that LOXL1 and LOXL4 remarkably enhanced cancer invasiveness among the LOX family genes with altered expression. Conclusions: These findings indicate that ZEB1 potentiates Zn2+-mediated transcription of plural EMT-relevant factors, including LOXL1 and LOXL4, whose upregulation plays a critical role in the invasive dissemination of breast cancer cells.

9.
Microbiol Immunol ; 67(4): 194-200, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36606663

RESUMO

Defective superoxide production by NADPH oxidase 2 (Nox2) in phagocyte cells results in the development of chronic granulomatous disease (CGD), a hereditary disease characterized by recurrent and life-threatening infections. The partner protein p22phox is a membrane-spanning protein which forms a stable heterodimer with Nox2 in the endoplasmic reticulum. This interaction ensures the stability of each protein and their accurate trafficking to the cell membrane. The present paper describes the characterization of p22phox missense mutations that were identified in a patient with CGD who presented with undetectable levels of p22phox . Using a reconstitution system, it was found that p22phox expression decreased when R90Q, A117E, S118R, A124S, A124V, A125T, or E129K mutations were introduced, suggesting that these mutations destabilize the protein. In contrast, introducing an L105R mutation did not affect protein expression, but did inhibit p22phox binding to Nox2. Thus, the missense mutations discussed here contribute to the development of CGD by either disrupting protein stability or by impairing the interaction between p22phox and Nox2.


Assuntos
NADPH Oxidases , Cricetulus , Animais , Linhagem Celular , Humanos , NADPH Oxidases/química , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Mutação de Sentido Incorreto , NADPH Oxidase 2/metabolismo
10.
Oral Dis ; 29(8): 3193-3204, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35708905

RESUMO

OBJECTIVE: We previously reported that dickkopf WNT signaling inhibitor 3 (DKK3) would modulate malignant potential of oral squamous cell carcinoma (OSCC) via activating Akt. Recently, cytoskeleton associated protein 4 (CKAP4) functions as receptor of DKK3, which activates Akt in esophageal squamous cell carcinoma, but its expression and function in OSCC were unclear. METHODS: We studied DKK3 and CKAP4 protein expression in OSCC tissue and investigated the correlation between protein expression and clinical data. We also investigated whether antibodies (Ab) for DKK3 or CKAP4 could suppress malignant potential of the cancer cells. RESULTS: DKK3/CKAP4 protein expression was observed in majority of OSCC cases and was associated with significantly higher T-stage and TNM stage. Multivariate analysis revealed that DKK3 and CKAP4 were independent prognostic biomarkers for overall survival (OS) and disease-free survival (DFS), respectively. Survival analyses revealed that DKK3-positive cases and CKAP4-positive cases showed significantly shorter OS and DFS, respectively, and that DKK3/CKAP4 double-negative cases showed significantly favorable prognosis. Both anti-DKK3Ab and anti-CKAP4Ab could suppress cancer cell proliferation, migration, and invasion. CONCLUSION: DKK3/CKAP4 axis is thought to be important in OSCC, and it would be a promising therapeutic target.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço , Prognóstico , Proliferação de Células , Linhagem Celular Tumoral , Proteínas de Membrana/metabolismo , Proteínas Adaptadoras de Transdução de Sinal
11.
PLoS One ; 17(12): e0279182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36534650

RESUMO

Coronavirus disease 2019 (COVID-19) pandemic poses a threat to human beings and numerous cases of infection as well as millions of victims have been reported. The binding of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein receptor binding domain (RBD) to human angiotensin converting enzyme 2 (hACE2) is known to promote the engulfment of the virus by host cells. Employment of flavor/fragrance compositions to prevent SARS-CoV-2 infection by inhibiting the binding of viral RBD (vRBD) to hACE2 might serve as a favorable, simple, and easy method for inexpensively preventing COVID-19, as flavor/fragrance compositions are known to directly interact with the mucosa in the respiratory and digestive systems and have a long history of use and safety assessment. Herein we report the results of screening of flavor/fragrance compositions that inhibit the binding of vRBD to hACE2. We found that the inhibitory effect was observed with not only the conventional vRBD, but also variant vRBDs, such as L452R, E484K, and N501Y single-residue variants, and the K417N+E484K+N501Y triple-residue variant. Most of the examined flavor/fragrance compositions are not known to have anti-viral effects. Cinnamyl alcohol and Helional inhibited the binding of vRBD to VeroE6 cells, a monkey kidney cell line expressing ACE2. We termed the composition with inhibitory effect on vRBD-hACE2 binding as "the molecularly targeted flavor/fragrance compositions". COVID-19 development could be prevented by using these compositions with reasonable administration methods such as inhalation, oral administration, and epidermal application.


Assuntos
Antivirais , Aromatizantes , Odorantes , SARS-CoV-2 , Humanos , Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19 , Ligação Proteica , Receptores Virais/metabolismo , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Antivirais/química , Aromatizantes/química , Células Vero , Animais
12.
Cancer Cell Int ; 22(1): 352, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376957

RESUMO

BACKGROUND: Head and neck squamous cell carcinoma (HNSCC) is the most common malignant tumor of the head and neck. We identified cancer-specific genes in HNSCC and focused on DKK3 expression. DKK3 gene codes two isoforms of proteins (secreted and non-secreted) with two distinct cysteine rich domains (CRDs). It is reported that DKK3 functions as a negative regulator of oncogenic Wnt signaling and, is therefore, considered to be a tumor suppressor gene. However, our series of studies have demonstrated that DKK3 expression is specifically high in HNSCC tissues and cells, and that DKK3 might determine the malignant potentials of HNSCC cells via the activation of Akt. Further analyses strongly suggested that both secreted DKK3 and non-secreted DKK3 could activate Akt signaling in discrete ways, and consequently exert tumor promoting effects. We hypothesized that DKK3 might be a specific druggable target, and it is necessary to establish a DKK3 inhibitor that can inhibit both secreted and non-secreted isoforms of DKK3. METHODS: Using inverse polymerase chain reaction, we generated mutant expression plasmids that express DKK3 without CRD1, CRD2, or both CRD1 and CRD2 (DKK3ΔC1, DKK3ΔC2, and DKK3ΔC1ΔC2, respectively). These plasmids were then transfected into HNSCC-derived cells to determine the domain responsible for DKK3-mediated Akt activation. We designed antisense peptides using the MIMETEC program, targeting DKK3-specific amino acid sequences within CRD1 and CRD2. The structural models for peptides and DKK3 were generated using Raptor X, and then a docking simulation was performed using CluPro2. Afterward, the best set of the peptides was applied into HNSCC-derived cells, and the effects on Akt phosphorylation, cellular proliferation, invasion, and migration were assessed. We also investigated the therapeutic effects of the peptides in the xenograft models. RESULTS: Transfection of mutant expression plasmids and subsequent functional analyses revealed that it is necessary to delete both CRD1 and CRD2 to inhibit Akt activation and inhibition of proliferation, migration, and invasion. The inhibitory peptides for CRD1 and CRD2 of DKK3 significantly reduced the phosphorylation of Akt, and consequently suppressed cellular proliferation, migration, invasion and in vivo tumor growth at very low doses. CONCLUSIONS: This inhibitory peptide represents a promising new therapeutic strategy for HNSCC treatment.

13.
Biochem Biophys Res Commun ; 634: 83-91, 2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36240653

RESUMO

Bladder cancer is an often widely disseminated and deadly cancer. To block the malignant outgrowth of bladder cancer, we must elucidate the molecular-level characteristics of not only bladder cancer cells but also their surrounding milieu. As part of this effort, we have long been studying extracellular S100A8/A9, which is elevated by the inflammation associated with certain cancers. Extracellularly enriched S100A8/A9 can hasten a shift to metastatic transition in multiple types of cancer cells. Intriguingly, high-level S100A8/A9 has been detected in the urine of bladder-cancer patients, and the level increases with the stage of malignancy. Nonetheless, S100A8/A9 has been investigated mainly as a potential biomarker of bladder cancers, and there have been no investigations of its role in bladder-cancer growth and metastasis. We herein report that extracellular S100A8/A9 induces upregulation of growth, migration and invasion in bladder cancer cells through its binding with cell-surface Toll-like receptor 4 (TLR4). Our molecular analysis revealed the TLR4 downstream signal that accelerates such cancer cell events. Tumor progression locus 2 (TPL2) was a key factor facilitating the aggressiveness of cancer cells. Upon binding of S100A8/A9 with TLR4, TPL2 activation was enhanced by an action with a TLR4 adaptor molecule, TIR domain-containing adaptor protein (TIRAP), which in turn led to activation of the mitogen-activated protein kinase (MAPK) cascade of TPL2. Finally, we showed that sustained inhibition of TLR4 in cancer cells effectively dampened cancer survival in vivo. Collectively, our results indicate that the S100A8/A9-TLR4-TPL2 axis influences the growth, survival, and invasive motility of bladder cancer cells.


Assuntos
Receptor 4 Toll-Like , Neoplasias da Bexiga Urinária , Humanos , Calgranulina A/metabolismo , Calgranulina B/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores de Interleucina-1 , Receptor 4 Toll-Like/metabolismo , Bexiga Urinária/metabolismo
14.
Front Plant Sci ; 13: 1002605, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36304401

RESUMO

Over-accumulation of salt in rice plants is an effect of salt stress which decreases growth and grain yield. Salt removal ability in leaf sheaths is a tolerance mechanism to decrease salt entry and accumulation in leaf blades and maintain photosynthesis under salinity. In this study, a QTL analysis of removal ability of sodium ions (Na+) in leaf sheaths and Na+ accumulation-related traits, was conducted using F2 population between two rice varieties, IR-44595 with superior Na+ removal ability, and 318 with contrasting Na+ removal ability in leaf sheaths under salinity. Suggestive QTLs for Na+ removal ability in leaf sheaths were found on chromosomes 4 and 11. The suggestive QTL on chromosome 11 overlapped with other significant QTLs for Na+ concentration in shoots, leaf blades and leaf sheaths, and Na+/K+ ratio in leaf blades. Correlation analysis indicated that Na+ removal ability in leaf sheaths is important in reducing Na+ accumulation in leaf blades. The varietal difference of Na+ removal ability in leaf sheaths at the whole plant level was greater at lower NaCl concentrations and became smaller as the treatment NaCl concentration increased. Although the Na+ removal ability in leaf sheath was comparable between IR-44595 and 318 under high salinity at the whole plant level, the younger leaves of IR-44595 still showed a higher Na+ sheath-blade ratio than 318, which implied the Na+ removal ability functions in the younger leaves in IR-44595 to reduce Na+ entry in young leaf blades even under high salinity.

15.
Biomed Pharmacother ; 155: 113733, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36271542

RESUMO

Pancreatic cancer is recalcitrant to treatment as it is highly metastatic and rapidly progressive. While observing the behavior of human pancreatic BxPC-3 cells using an optical assay device called TAXIScan, we found that several synthetic pyrazole and pyrimidine derivatives inhibited cell migration. One such compound, 14-100, inhibited metastasis of fluorescence-labeled BxPC-3 cells, which were transplanted into the pancreas of nude mice as a subcutaneously grown cancer fragment. Surprisingly, despite its low cytotoxicity, the compound also showed an inhibitory effect on cancer cell proliferation in vivo, suggesting that the compound alters cancer cell characteristics needed to grow in situ. Single-cell RNA-sequencing revealed changes in gene expression associated with metastasis, angiogenesis, inflammation, and epithelial-mesenchymal transition. These data suggest that the compound 14-100 could be a good drug candidate against pancreatic cancer.


Assuntos
Quimiotaxia , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Camundongos Nus , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Pancreáticas/patologia , Pâncreas/patologia , Transformação Celular Neoplásica , Pirazóis/farmacologia , Pirazóis/uso terapêutico , RNA , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Neoplasias Pancreáticas
16.
Redox Biol ; 56: 102479, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36122532

RESUMO

The transmembrane protein p22phox heterodimerizes with NADPH oxidase (Nox) 1-4 and is essential for the reactive oxygen species-producing capacity of oxidases. Missense mutations in the p22phox gene prevent the formation of phagocytic Nox2-based oxidase, which contributes to host defense. This results in chronic granulomatous disease (CGD), a severe primary immunodeficiency syndrome. In this study, we characterized missense mutations in p22phox (L51Q, L52P, E53V, and P55R) in the A22° type (wherein the p22phox protein is undetectable) of CGD. We demonstrated that these substitutions enhanced the degradation of the p22phox protein in the endoplasmic reticulum (ER) and the binding of p22phox to Derlin-1, a key component of ER-associated degradation (ERAD). Therefore, the L51-L52-E53-P55 sequence is responsible for protein stability in the ER. We observed that the oxidation of the thiol group of Cys-50, which is adjacent to the L51-L52-E53-P55 sequence, suppressed p22phox degradation. However, the suppression effect was markedly attenuated by the serine substitution of Cys-50. Blocking the free thiol of Cys-50 by alkylation or C50S substitution promoted the association of p22phox with Derlin-1. Derlin-1 depletion partially suppressed the degradation of p22phox mutant proteins. Furthermore, heterodimerization with p22phox (C50S) induced rapid degradation of not only Nox2 but also nonphagocytic Nox4 protein, which is responsible for redox signaling. Thus, the redox-sensitive Cys-50 appears to determine whether p22phox becomes a target for degradation by the ERAD system through its interaction with Derlin-1.


Assuntos
Doença Granulomatosa Crônica , Proteínas de Membrana , NADPH Oxidases , Humanos , Proteínas de Membrana/metabolismo , Proteínas Mutantes , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Serina , Compostos de Sulfidrila
17.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142212

RESUMO

The dissection of the complex multistep process of metastasis exposes vulnerabilities that could be exploited to prevent metastasis. To search for possible factors that favor metastatic outgrowth, we have been focusing on secretory S100A8/A9. A heterodimer complex of the S100A8 and S100A9 proteins, S100A8/A9 functions as a strong chemoattractant, growth factor, and immune suppressor, both promoting the cancer milieu at the cancer-onset site and cultivating remote, premetastatic cancer sites. We previously reported that melanoma cells show lung-tropic metastasis owing to the abundant expression of S100A8/A9 in the lung. In the present study, we addressed the question of why melanoma cells are not metastasized into the brain at significant levels in mice despite the marked induction of S100A8/A9 in the brain. We discovered the presence of plasma histidine-rich glycoprotein (HRG), a brain-metastasis suppression factor against S100A8/A9. Using S100A8/A9 as an affinity ligand, we searched for and purified the binding plasma proteins of S100A8/A9 and identified HRG as the major protein on mass spectrometric analysis. HRG prevents the binding of S100A8/A9 to the B16-BL6 melanoma cell surface via the formation of the S100A8/A9 complex. HRG also inhibited the S100A8/A9-induced migration and invasion of A375 melanoma cells. When we knocked down HRG in mice bearing skin melanoma, metastasis to both the brain and lungs was significantly enhanced. The clinical examination of plasma S100A8/A9 and HRG levels showed that lung cancer patients with brain metastasis had higher S100A8/A9 and lower HRG levels than nonmetastatic patients. These results suggest that the plasma protein HRG strongly protects the brain and lungs from the threat of melanoma metastasis.


Assuntos
Calgranulina A/metabolismo , Calgranulina B/metabolismo , Neoplasias Pulmonares , Melanoma Experimental , Proteínas/metabolismo , Animais , Calgranulina A/sangue , Calgranulina A/genética , Calgranulina B/sangue , Fatores Quimiotáticos , Ligantes , Neoplasias Pulmonares/metabolismo , Camundongos
18.
Euphytica ; 218(6): 74, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060537

RESUMO

Salt stress is a major constraint across large rice production areas in Asia, because of the high sensitivity of modern rice varieties. To identify quantitative trait loci (QTL) associated with salt tolerance in rice, we developed an F2 population from a cross between the salt-tolerant landrace, Kalarata, and the salt-sensitive parent, Azucena. F3 families from this population were screened and scored for salt tolerance using IRRI's Standard evaluation system (SES). Growth, biomass, Na+ and K+ concentrations in leaf tissues, and chlorophyll concentration were determined. A genetic linkage map was constructed with 151 SSRs and InDel markers, which cover 1463 cM with an average distance of 9.69 cM between loci. A total of 13 QTL were identified using Composite Interval Mapping for 16 traits. Several novel QTL were identified in this study, the largest is for root sodium concentration (LOD = 11.0, R2 = 25.0) on chromosome 3, which also co-localize with a QTL for SES. Several QTL on the short arm of chromosome 1 coincide with the Saltol locus identified before. The novel QTL identified in this study constitute future targets for molecular breeding, to combine them with other QTL identified before, for higher tolerance and stable performance of rice varieties in salt affected soils. Supplementary Information: The online version contains supplementary material available at 10.1007/s10681-022-03026-8.

19.
Materials (Basel) ; 15(3)2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-35160830

RESUMO

The tensile behavior of Sn-Bi-Cu and Sn-Bi-Ni alloys has been widely investigated. Reportedly, the addition of small amounts of a third element can refine the microstructures of the eutectic Sn-58mass% Bi solder and improve its ductility. However, the superplasticity mechanism of Sn-based alloys has not been clearly established. Therefore, in this study, the effects of Sb and Zn addition on the microstructures and tensile properties of Sn-Bi-based alloys were investigated. The alloys were subjected to tensile tests under various strain rates and temperatures. We found that Zn- and Sb-added Sn-Bi-based alloys demonstrated superplastic deformation at high temperatures and low strain rates. Sb addition significantly affected the elongation of the Sn-Bi-Sb alloys because the metal dissolves in both the primary Sn phase and the eutectic Sn-Bi matrix. The segregation of Zn and formation of needle-like Zn particles at the eutectic Sn-Bi phase boundary affected the superplastic deformation of the alloys. The deformation of the Sn-40Bi-based alloys at high temperatures and low strain rates led to dynamic recovery, dynamic recrystallization, and/or grain boundary slip because of the accumulation of voids.

20.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983834

RESUMO

The development of a plastic root system is essential for stable crop production under variable environments. Rice plants have two types of lateral roots (LRs): S-type (short and thin) and L-type (long, thick, and capable of further branching). LR types are determined at the primordium stage, with a larger primordium size in L-types than S-types. Despite the importance of LR types for rice adaptability to variable water conditions, molecular mechanisms underlying the primordium size control of LRs are unknown. Here, we show that two WUSCHEL-related homeobox (WOX) genes have opposing roles in controlling LR primordium (LRP) size in rice. Root tip excision on seminal roots induced L-type LR formation with wider primordia formed from an early developmental stage. QHB/OsWOX5 was isolated as a causative gene of a mutant that is defective in S-type LR formation but produces more L-type LRs than wild-type (WT) plants following root tip excision. A transcriptome analysis revealed that OsWOX10 is highly up-regulated in L-type LRPs. OsWOX10 overexpression in LRPs increased the LR diameter in an expression-dependent manner. Conversely, the mutation in OsWOX10 decreased the L-type LR diameter under mild drought conditions. The qhb mutants had higher OsWOX10 expression than WT after root tip excision. A yeast one-hybrid assay revealed that the transcriptional repressive activity of QHB was lost in qhb mutants. An electrophoresis mobility shift assay revealed that OsWOX10 is a potential target of QHB. These data suggest that QHB represses LR diameter increase, repressing OsWOX10 Our findings could help improve root system plasticity under variable environments.


Assuntos
Genes Homeobox , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Meristema/citologia , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...