Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem Lett ; 9(10): 2685-2690, 2018 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-29739190

RESUMO

Möbius aromatic molecules have attracted great attention as new functional materials because of their π-orbital cyclic conjugations lying along the twisted Möbius topology. To elucidate the electronic character of the lowest excited triplet (T1) state of a Möbius aromatic [28]hexaphyrin, we employed a time-resolved electron paramagnetic resonance (TREPR) method with applied magnetophotoselection measurements at 77 K. Analyses of the EPR parameters have revealed that the T1 state possesses intramolecular charge-transfer (CT) character together with local excitation character residing at one side in the Möbius strip ring. We have also demonstrated that the CT character between orthogonal unpaired orbitals triggers quick triplet deactivation by spin-orbit coupling. This deactivation can be an important barometer to represent the "antiaromaticity" because of a connection between the orthogonal CT character and instability by a weakened spin-spin exchange coupling in the T1 state.

2.
J Phys Chem A ; 116(39): 9662-73, 2012 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-22946766

RESUMO

The lowest excited triplet (T(1)) ππ* states of gallium (Ga) and various rhodium (Rh) 5,10,15-trispentafluorophenyl corroles (Cors) were studied in the liquid crystal (LC) E-7 and in rigid glasses by time-resolved electron paramagnetic resonance (TR-EPR) spectroscopy. The triplet sublevel energies were experimentally determined by the alignment of the molecules in the LC and by magnetophotoselection in the glass. The sublevel scheme of GaCor was determined by calculating the zero field splitting (ZFS) parameters. Axial ligand effects and quantum chemical calculations were used for the sublevel assignment of RhCors. The anisotropic EPR parameters were used to determine the important higher excited states and the magnitudes of their spin-orbit coupling (SOC) contributions were evaluated. On the basis of these results and analyses, the EPR parameters and triplet lifetime were discussed for each RhCor complex.

3.
J Am Chem Soc ; 134(39): 16319-26, 2012 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-22963168

RESUMO

Molecular magnets Cu(hfac)(2)L(R) represent a new type of photoswitchable materials based on exchange-coupled clusters of copper(II) with stable nitroxide radicals. It was found recently that the photoinduced spin state of these compounds is metastable on the time scale of hours at cryogenic temperatures, similar to the light-induced excited spin state trapping phenomenon well-known for many spin-crossover compounds. Our previous studies have shown that electron paramagnetic resonance (EPR) in continuous wave (CW) mode allows for studying the light-induced spin state conversion and relaxation in the Cu(hfac)(2)L(R) family. However, light-induced spin dynamics in these compounds has not been studied on the sub-second time scale so far. In this work we report the first time-resolved (TR) EPR study of light-induced spin state switching and relaxation in Cu(hfac)(2)L(R) with nanosecond temporal resolution. To enhance spectral resolution we used high-frequency TR EPR at W-band (94 GHz). We first discuss the peculiarities of applying TR EPR to the solid-phase compounds Cu(hfac)(2)L(R) at low (liquid helium) temperatures and approaches developed for photoswitching/relaxation studies. Then we analyze the kinetics of the excited spin state at T = 5-21 K. It has been found that the photoinduced spin state is formed at time delays shorter than 100 ns. It has also been found that the observed relaxation of the excited state is exponential on the nanosecond time scale, with the decay rate depending linearly on temperature. We propose and discuss possible mechanisms of these processes and correlate them with previously obtained CW EPR data.

4.
J Phys Chem Lett ; 3(21): 3115-9, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26296015

RESUMO

Magnetic control over excited states of molecules presents interest for many applications. Here we show for the first time that visible room temperature phosphorescence in multichromophoric donor-acceptor systems can be modulated by weak magnetic fields (<1 T) via magnetic field effects (MFE) on the spin dynamics in photogenerated radical pairs (RPs). The studied compounds comprise Pt porphyrin (PtP)-Rosamine B (RosB) dyads, which possess strong visible absorption bands and phosphoresce at room temperature. The observed MFE is unique in that it occurs upon direct excitation of the PtP in the dyads, whereby ultrafast quantitative formation of the local PtP triplet state precedes the occurrence of radical intermediates. A model explaining the effect is proposed, which is based on reversible electron transfer between the local triplet state and a long-lived RP. External magnetic field modulates spin dynamics in the RP, affecting contribution of the singlet RP recombination channel and thereby influencing phosphorescence.

5.
J Am Chem Soc ; 133(12): 4655-60, 2011 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-21381752

RESUMO

The oxidation of a redox-active tyrosine residue Y(Z) in photosystem II (PSII) is coupled with proton transfer to a hydrogen-bonded D1-His190 residue. Because of the apparent proximity of Y(Z) to the water-oxidizing complex and its redox activity, it is believed that Y(Z) plays a significant role in water oxidation in PSII. We investigated the g-anisotropy of the tyrosine radical Y(Z)(•) to provide insight into the mechanism of Y(Z)(•) proton-coupled electron transfer in Mn-depleted PSII. The anisotropy was highly resolved by electron paramagnetic resonance spectroscopy at the W-band (94.9 GHz) using PSII single crystals. The g(X)-component along the phenolic C-O bond of Y(Z)(•) was calculated by density functional theory (DFT). It was concluded from the highly resolved g-anisotropy that Y(Z) loses a phenol proton to D1-His190 upon tyrosine oxidation, and D1-His190 redonates the same proton back to Y(Z)(•) upon reduction.


Assuntos
Complexo de Proteína do Fotossistema II/metabolismo , Prótons , Tirosina/análogos & derivados , Anisotropia , Transporte de Elétrons , Conformação Molecular , Oxirredução , Complexo de Proteína do Fotossistema II/química , Teoria Quântica , Tirosina/química , Tirosina/metabolismo
6.
Chemistry ; 17(16): 4396-407, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21425367

RESUMO

The synthesis of [14]triphyrin(2.1.1) compounds is described. In contrast with conventional subporphyrins, which consistently contain a central boron atom, free-base heteroaromatic compounds can be formed. A modified Lindsey method was used to prepare a range of different [14]triphyrins(2.1.1) in yields of up to 35% based on the reaction of diethylpyrrole (1a) and fused pyrroles of bicyclo[2.2.2]octadiene (BCOD) (2a-e) and dihydroethanonaphthalene (4a) with various aryl aldehydes. The concentration of BF(3)·OEt(2) catalyst plays the key role in determining the yield of the [14]triphyrin(2.1.1) macrocycle relative to the conventional tetrapyrrole porphyrin product. Retro-Diels-Alder reactions of 2a-e and 4a result in the formation of [14]tribenzotriphyrin (2.1.1) (3a-e) and [14]trinaphthotriphyrin(2.1.1) (5a). The effects of exocyclic ring annulation on the electronic structure are examined in detail based on optical spectroscopy, theoretical calculations, and electrochemical measurements. The availability of free-base compounds enables the formation of [Re(I)(CO)(3)(triphyrin)] (6a) and [Ru(II)(CO)(2)Cl(triphyrin)] (7a) complexes based on a modified retro-Diels-Alder reaction. X-ray structures are reported for 4a and 6a.

7.
Dalton Trans ; 39(35): 8143-52, 2010 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-20689891

RESUMO

The mononuclear Fe(II) phthalocyanine 2 and ball-type homobinuclear Fe(II)-Fe(II) and Cu(II)-Cu(II) phthalocyanines, 3 and 4 respectively, were synthesized from the corresponding 4,4'-[1,1'-methylenebis-(naphthalene-2,1-diyl)]bis(oxy)diphthalonitrile 1, and then ball-type heterobinuclear Fe(II)-Cu(II) phthalocyanine 5 was synthesized from 2. The novel compounds 4 and 5 have been characterized by elemental analysis, UV/vis, IR and MALDI-TOF mass spectroscopies. Electron paramagnetic resonance and magnetic circular dichroism measurements of 3, 4 and 5 were also examined. The voltammetric measurements of the complexes showed the formation of various electrochemically stable ligand- and metal-based mixed-valence species, due to the intramolecular interactions between the two MPc units, especially in ball-type binuclear iron(II) phthalocyanine. Impedance spectroscopy and d.c. conductivity measurements of 4 and 5 were performed as a function of temperature (295-523 K) and frequency (40-10(5) Hz). While room temperature impedance spectra consist of a curved line, a transformation into a full semicircle with increasing temperature was observed for both compounds.

8.
J Phys Chem B ; 114(45): 14559-63, 2010 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-20527941

RESUMO

The lowest excited triplet (T(1)) states of magnesium and zinc tetraphenylporphines (MgTPP and ZnTPP) were studied by time-resolved (TR) high-frequency/high-field W-band electron paramagnetic resonance (hf-EPR) spectroscopy in rigid glasses at low temperatures. Inspections of the TR-hf-EPR spectra of the spin-polarized triplets revealed that the zero field splitting (ZFS) parameters, D and E, for MgTPP and ZnTPP triplets were nearly the same. At the same time, their g-tensors were found to be different. These results are interpreted quantitatively in terms of spin-orbit couplings (SOCs) and angular momenta among the excited states, giving a magnitude of SOC in the T(1) state of ZnTPP. For the first time, both the TR-hf-EPR spectra and corresponding time profiles were acquired on the ZnTPP's triplet at room temperature in liquid paraffin solution with the populations of the electron spin states being in Boltzmann equilibrium. Because of relatively fast paramagnetic relaxation in rotating triplet at room temperature, the spectra and time profiles were free from the effects of microwave saturation that allowed for the direct measurement of the absolute intersystem crossing ratios P(x):P(y):P(z) 0.085:0.085:0.83. All of these results have demonstrated advantages and new perspectives of the W-band EPR spectroscopy.

9.
J Phys Chem B ; 113(9): 2913-21, 2009 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-19708118

RESUMO

LOV domains belong to the PAS domain superfamily, which are found in a variety of sensor proteins in organism ranging from archaea to eukaryotes, and they noncovalently bind a single flavin mononucleotide as a chromophore. We report the Raman spectra of the dark state of LOV domain in FKF1 from Arabidopsis thaliana. Spectra have been also measured for the signaling state, where a cysteinyl-flavin adduct is formed upon light irradiation. Most of the observed Raman bands are assigned on the basis of normal mode calculations using a density functional theory. We also discuss implication for the analysis of the infrared spectra of LOV domains. The comprehensive assignment provides a satisfactory framework for future investigations of the photocycle mechanism in LOV domains by vibrational spectroscopy.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Domínio Catalítico , Cristalização , Cisteína/química , Escherichia coli/metabolismo , Flavinas/química , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Estrutura Terciária de Proteína , Proteínas/química , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman/métodos
10.
Biochemistry ; 47(23): 6157-68, 2008 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-18479150

RESUMO

Neuronal PAS protein 2 (NPAS2), a heme-binding transcriptional regulatory factor, is involved in circadian rhythms. Period homologue (Per) is another important transcriptional regulatory factor that binds to cryptochrome (Cry). The resultant Per/Cry heterodimer interacts with the NPAS2/BMAL1 heterodimer to inhibit the transcription of Per and Cry. Previous cell biology experiments indicate that mouse Per2 (mPer2) is also a heme-binding protein, and heme shuttling between mPer2 and NPAS2 may regulate transcription. In the present study, we show that the isolated PAS-A domain of mPer2 (PAS-A-mPer2) binds the Fe(III) protoporphyrin IX complex (hemin) with a heme:protein stoichiometry of 1:1. Optical absorption and EPR spectroscopic findings suggest that the Fe(III)-bound PAS-A-mPer2 is a six-coordinated low-spin complex with Cys and an unknown axial ligand. A Hg (2+) binding study supports the theory that Cys is one of the axial ligands for Fe(III)-bound PAS-A-mPer2. The dissociation rate constant of the Fe(III) complex from PAS-A-mPer2 (6.3 x 10 (-4) s (-1)) was comparable to that of the heme-regulated inhibitor (HRI), a heme-sensor enzyme (1.5 x 10 (-3) s (-1)), but markedly higher than that of metmyoglobin (8.4 x 10 (-7) s (-1)). As confirmed by a Soret absorption spectral shift, heme transferred from the holo basic helix-loop-helix PAS-A of NPAS2 to apoPAS-A-mPer2. The Soret CD spectrum of the C215A mutant PAS-A-mPer2 protein was markedly different from that of the wild-type protein. On the basis of the data, we propose that PAS-A-mPer2 is a heme-sensor protein in which Cys215 is the heme axial ligand.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Ritmo Circadiano/fisiologia , Heme/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/química , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Sítios de Ligação , Encéfalo/fisiologia , Proteínas de Ciclo Celular/genética , Clonagem Molecular , Cisteína/metabolismo , Primers do DNA , Heme/química , Ferro/metabolismo , Mercúrio/metabolismo , Camundongos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Proteínas Circadianas Period , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Análise Espectral Raman , Fatores de Transcrição/genética
11.
J Am Chem Soc ; 130(8): 2466-72, 2008 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-18237165

RESUMO

Product analyses and nanosecond time-resolved spectroscopy on laser flash photolysis were studied for the photoinduced electron-transfer reaction of 3,4-di(alpha-styryl)furan (6a). A combination of these results, kinetic, density functional theoretical (DFT), and time-dependent DFT analyses enabled assignment of the absorption to the tetramethyleneethane (TME)-type radical cation (7a*+, lambda(max) = 392 nm) and the corresponding singlet biradical ((1)7a**, lambda(max) = 661 nm). These two intermediates were mechanistically linked to each other with a facile back electron-transfer reaction. The present studies provide a new method for the generation of aryl-substituted TME-type intermediates.


Assuntos
Alcenos/química , Elétrons , Etano/análogos & derivados , Furanos/química , Alcenos/efeitos da radiação , Cátions/química , Cátions/efeitos da radiação , Etano/química , Etano/efeitos da radiação , Radicais Livres/química , Radicais Livres/efeitos da radiação , Furanos/efeitos da radiação , Lasers , Espectroscopia de Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/normas , Modelos Químicos , Estrutura Molecular , Fotoquímica , Fotólise , Teoria Quântica , Padrões de Referência
12.
Chemistry ; 13(31): 8714-25, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17665374

RESUMO

A doubly protonated hydrochloride salt of a saddle-distorted dodecaphenylporphyrin (H2DPP), [H4DPPP]Cl2, forms a porphyrin nanochannel (PNC). X-ray crystallography was used to determine the structure of the molecule, which revealed the inclusion of guest molecules within the PNC. Electron-donating molecules, such as p-hydroquinone and p-xylene, were selectively included within the PNC in sharp contrast to electron acceptors, such as the corresponding quinones, which were not encapsulated. This result indicates that the PNC can recognize the electronic character and steric hindrance of the guest molecules during the course of inclusion. ESR measurements (photoirradiation at lambda>340 nm at room temperature) of the PNC that contains p-hydroquinone, catechol, and tetrafluorohydroquinone guest molecules gave well-resolved signals, which were assigned to cation radicals formed without deprotonation based on results from computer simulations of the ESR spectra and density functional theory (DFT) calculations. The radicals are derived from photoinduced electron transfer from the guest molecules to the singlet state of H4DPP2+. Transient absorption spectroscopy by femtosecond laser flash photolysis allowed us to observe the formation of 1(H4DPP2+)*, which is converted to H4DPP+. by electron transfer from the guest molecules to 1(H4DPP2+)*, followed by fast disproportionation of H4DPP+., and charge recombination to give diamagnetic species and the triplet excited state 3(H4DPP2+)*, respectively.


Assuntos
Elétrons , Nanoestruturas/química , Porfirinas/química , Cátions/química , Cristalografia por Raios X , Eletroquímica , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Fotoquímica , Temperatura
13.
J Inorg Biochem ; 101(8): 1172-9, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17597215

RESUMO

Heme-regulated eIF2alpha kinase (HRI) is an important enzyme that modulates protein synthesis during cellular emergency/stress conditions, such as heme deficiency in red cells. It is essential to identify the heme axial ligand(s) and/or binding sites to establish the heme regulation mechanism of HRI. Previous reports suggest that a His residue in the N-terminal region and a Cys residue in the C-terminal region trans to the His are axial ligands of the heme. Moreover, mutational analyses indicate that a residue located in the kinase insertion (KI) domain between Kinase I and Kinase II domains in the C-terminal region is an axial ligand. In the present study, we isolate the KI domain of mouse HRI and employ site-directed mutagenesis to identify the heme axial ligand. The optical absorption spectrum of the Fe(III) hemin-bound wild-type KI displays a broad Soret band at around 373nm, while that of the Fe(II) heme-bound protein contains a band at 422nm. Spectral titration studies conducted for both the Fe(III) hemin and Fe(II) heme complexes with KI support a 1:1 stoichiometry of heme iron to protein. Resonance Raman spectra of Fe(III) hemin-bound KI suggest that thiol is the axial ligand in a 5-coordinate high-spin heme complex as a major form. Electron spin resonance (ESR) spectra of Fe(III) hemin-bound KI indicate that the axial ligands are OH(-) and Cys. Since Cys385 is the only cysteine in KI, the residue was mutated to Ser, and its spectral characteristics were analyzed. The Soret band position, heme spectral titration behavior and ESR parameters of the Cys385Ser mutant were markedly different from those of wild-type KI. Based on these spectroscopic findings, we conclude that Cys385 is an axial ligand of isolated KI.


Assuntos
Cisteína/genética , Heme/química , eIF-2 Quinase/genética , eIF-2 Quinase/isolamento & purificação , Animais , Cisteína/isolamento & purificação , Espectroscopia de Ressonância de Spin Eletrônica , Regulação da Expressão Gênica , Heme/genética , Heme/metabolismo , Ligantes , Camundongos , Mutagênese Insercional , Ligação Proteica/genética , Estrutura Terciária de Proteína/genética , Serina/genética , Espectrofotometria Ultravioleta , Análise Espectral Raman , eIF-2 Quinase/metabolismo
14.
J Phys Chem A ; 111(21): 4612-9, 2007 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-17489568

RESUMO

The substituent effect on the g-tensor of polycrystalline 2,6-di-tert-butyl phenoxyl radical derivatives diluted in diamagnetic crystals was investigated using multifrequency ESR spectroscopy and DFT calculations. It was revealed that the g-tensors of the series of phenoxyl radical derivatives essentially have an orthorhombic symmetry. For some radicals, the hyperfine-splitting tensors from the para groups were resolved. The interpretations and the assignments of the spin-Hamiltonian parameters were confirmed with computer simulations in all bands. The DFT-calculated g-tensors were consistent with the experimental g-tensors. Furthermore, the shifts Delta(g) from the free electron ge were analyzed in details as the sum of three contributions. The spin-orbit interactions were found to be the dominant factor with regard to the Delta(g). With a focus on the s-o term, thus, the relationship of the g-values and the electronic excited states was explained by visualizing the molecular orbitals of the phenoxyl radical derivatives. This study thus showed the very significant potential of the combination of a multi-frequency ESR approach and a DFT calculation to advanced ESR analysis, particularly, g-tensor analysis, even for a powder-sample radical.

15.
J Phys Chem B ; 111(10): 2719-26, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17311445

RESUMO

Photoactive yellow protein (PYP) is a bacterial photoreceptor containing a 4-hydroxycinnamyl chromophore. We report the Raman spectra for the dark state of PYP whose chromophore is isotopically labeled with 13C at the carbonyl carbon atom or at the ring carbon atoms. Spectra have been also measured with PYP in D2O where the exchangeable protons are deuterated. Most of the observed Raman bands are assigned on the basis of the observed isotope shifts and normal mode calculations using a density functional theory. We discuss the implication for the analysis of the infrared spectra of PYP. The comprehensive assignment provides a satisfactory framework for future investigations of the photocycle mechanism in PYP by vibrational spectroscopy.


Assuntos
Proteínas de Bactérias/química , Fotorreceptores Microbianos/química , Sítios de Ligação , Isótopos de Carbono , Cristalização , Halorhodospira halophila , Estrutura Molecular , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman
16.
Inorg Chem ; 46(3): 660-9, 2007 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-17257008

RESUMO

The newly synthesized tetra(quinoline-TEMPO)yttrium(III) potassium salt shows interesting structural features at the molecular and supramolecular levels, revealed by the analysis of the X-ray diffraction data. The magnetic susceptibility and EPR data corroborated with structural considerations showed that the exchange and dipolar spin coupling interactions are taking place at the nodes assembling the supramolecular 2D structure. The Y(III) center shows antiprismatic octacoordination, close to the idealized D2 symmetry. The diamagnetic transition metal plays no role in mediating the radical interactions since the TEMPO-type fragments are remote from the chelating moieties of the ligand. In turn, significant interaction occurs on the nodes consisting in the quasi-rectangular coordination of potassium counterions by the spin-bearing TEMPO groups coming from four distinct complex units. The antiferromagnetic susceptibility was consistently modeled by a spin Hamiltonian based on the rectangle topology of four spins S = 1/2. The fitted exchange parameters are Ja = -5.1 cm-1 and Jb = -3.4 cm-1 for the edges, imposing Jd = 0 for the diagonal. These values are in excellent agreement with the ab initio results Ja = -4.83 cm-1, Jb = -3.44 cm-1, Jd = -0.07 cm-1 obtained in a CASSCF(12,8) calculation. Based on the reliability of the ab initio results we were able to select the presented J parameters among several versions of multiple solutions with acceptable goodness of the fit. A methodological caveat about the artifacts of the automatic use of best fit parameters, in the absence of supplementary criteria, in the context of relative blindness of magnetic susceptibility modeling, is raised. The details of the EPR spectrum at 10 K are also consistent, in the frame of dipolar approximation, with the model of four interacting spins at the nodes of the supramolecular assembling.

17.
Biochemistry ; 45(32): 9894-905, 2006 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16893190

RESUMO

Heme-regulated eIF2alpha kinase [heme-regulated inhibitor (HRI)] plays a critical role in the regulation of protein synthesis by heme iron. The kinase active site is located in the C-terminal domain, whereas the N-terminal domain is suggested to regulate catalysis in response to heme binding. Here, we found that the rate of dissociation for Fe(III)-protoporphyrin IX was much higher for full-length HRI (1.5 x 10(-)(3) s(-)(1)) than for myoglobin (8.4 x 10(-)(7) s(-)(1)) or the alpha-subunit of hemoglobin (7.1 x 10(-)(6) s(-)(1)), demonstrating the heme-sensing character of HRI. Because the role of the N-terminal domain in the structure and catalysis of HRI has not been clear, we generated N-terminal truncated mutants of HRI and examined their oligomeric state, heme binding, axial ligands, substrate interactions, and inhibition by heme derivatives. Multiangle light scattering indicated that the full-length enzyme is a hexamer, whereas truncated mutants (truncations of residues 1-127 and 1-145) are mainly trimers. In addition, we found that one molecule of heme is bound to the full-length and truncated mutant proteins. Optical absorption and electron spin resonance spectra suggested that Cys and water/OH(-) are the heme axial ligands in the N-terminal domain-truncated mutant complex. We also found that HRI has a moderate affinity for heme, allowing it to sense the heme concentration in the cell. Study of the kinetics showed that the HRI kinase reaction follows classical Michaelis-Menten kinetics with respect to ATP but sigmoidal kinetics and positive cooperativity between subunits with respect to the protein substrate (eIF2alpha). Removal of the N-terminal domain decreased this cooperativity between subunits and affected the other kinetic parameters including inhibition by Fe(III)-protoporphyrin IX, Fe(II)-protoporphyrin IX, and protoporphyrin IX. Finally, we found that HRI is inhibited by bilirubin at physiological/pathological levels (IC(50) = 20 microM). The roles of the N-terminal domain and the binding of heme in the structural and functional properties of HRI are discussed.


Assuntos
Hemina/metabolismo , Estrutura Quaternária de Proteína , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/química , Animais , Catálise , Espectroscopia de Ressonância de Spin Eletrônica , Cinética , Camundongos , Peso Molecular , Mutagênese Sítio-Dirigida , Proteínas Mutantes/antagonistas & inibidores , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Fosforilação , Estrutura Terciária de Proteína , Protoporfirinas/metabolismo , Deleção de Sequência/genética , Relação Estrutura-Atividade , eIF-2 Quinase/metabolismo
18.
J Am Chem Soc ; 128(17): 5638-9, 2006 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-16637622

RESUMO

The flavin-adenine-dinucleotide-binding BLUF domain constitutes a new class of blue-light receptors, and the N-terminal domain of AppA is a representative of this family. A crystal structure of the BLUF domain from AppA suggested that a conserved Gln63 forms a hydrogen bond with the flavin N5 atom. Upon light excitation, this residue is proposed to undergo a approximately 180 degrees rotation that leads to a rearrangement of a hydrogen bonding network. However, crystallographic studies on the other BLUF proteins claimed an opposite orientation for the glutamine residue. In this communication, we have revealed the presence of a Gln63-to-N5 hydrogen bond in the dark state of AppA by a combined approach of mutagenesis, spectroscopy, and quantum chemical calculations. The present finding supports the view that the reorientation of the Gln63 side chain is a key event in the signaling state formation of BLUF proteins.


Assuntos
Fosfatos de Dinucleosídeos/química , Glutamina/química , Mutagênese , Teoria Quântica , Análise Espectral/métodos , Ligação de Hidrogênio , Modelos Moleculares
19.
J Phys Chem A ; 110(3): 1196-200, 2006 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-16420025

RESUMO

Multifrequency (X-, Q-, and W-band) electron spin resonance (ESR) spectroscopy has been used to characterize the phenoxyl radical produced from alpha-(3,5-di-tert-butyl-4-hydroxyphenyl)-N-tert-butylnitrone, which is a new spin-trapping reagent. The X-band measurement did not resolve the powder-pattern ESR spectrum. Because of its higher resolution with g value, the Q-band ESR study revealed that the g factor has an axial-like symmetry and that the observed hyperfine structure in the Z-direction is caused by the nitrogen nucleus at the para-position. Furthermore, the results of the W-band ESR experiment more clearly distinguished the perpendicular components from the parallel component, resolving the perpendicular components into x and y components. The X-band powder spectrum was similar to the X-band ESR spectrum of the radical in a frozen solution of toluene. The computer simulation spectra performed using the obtained parameters fitted the experimental spectra well. A comparison of the amplitude of g( perpendicular)(gx, gy) with that of gz showed that the unpaired electron is delocalized over the pi-conjugated framework. Considering the hyperfine coupling constant, it was concluded that about 16% of the unpaired electron distributed over the nitrogen nucleus at the para-position. This study thus showed the significant potential of a multifrequency ESR approach to a powder sample radical in terms of its high resolution with g value.

20.
Inorg Chem ; 44(25): 9125-7, 2005 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-16323888

RESUMO

New mono- and bis[4-(3-hydroxy-2-methyl-4-quinolinoyloxy)-2,2,6,6-tetramethylpiperidin-1-oxyl](meso-tetraphenylporphyrinato)yttrium(III) complexes have been synthesized, and the properties of the excited states generated by photoexcitation of porphyrin were studied by time-resolved (TR) and pulsed two-dimensional electron paramagnetic resonance (EPR) spectroscopy. A TR-EPR spectrum was observed in the quartet (S=3/2) or quintet (S=2) states generated from interactions of one or two radicals with the photoexcited triplet state of the porphyrin. The zero-field splitting D values of these states were analyzed in terms of those of the triplet and the radical-triplet pair. The spin states of the excited states were definitely assigned by measuring the mutation frequencies with pulsed EPR.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...