Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; : e202401960, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38777797

RESUMO

Cation order, which can be controlled by synthesis conditions and stoichiometry, plays an important role in properties of perovskite materials. Here we show that aliovalent doping by Sb5+ in Sm2MnMn(Mn4-xSbx)O12 quadruple perovskite solid solutions can control cation orders in both A and B sites. Samples with 0.4≤x≤2 were synthesized by a high-pressure, high-temperature method at 6 GPa and 1770 K. Three regions with different cation orders were found at 0.5≤x≤1.0, x=1.5-1.6, and x=1.8. The 0.5≤x≤1.0 compositions have a B-site-disordered and A-site columnar-ordered structure with space group P42/nmc; the x=1.5 and 1.6 samples have a B-site rock-salt-ordered and A-site columnar-ordered structure with space group P42/n; the x=1.8 sample has a B-site rock-salt-ordered and A-site-disordered structure with space group P21/n. All the samples show one ferrimagnetic transition: TC increases from 35 K to 73 K for 0.5≤x≤1.0, TC=81 K for x=1.5 and 1.6, and TC=53 K for x=1.8.

2.
Phys Rev Lett ; 132(15): 156701, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38682975

RESUMO

A new perovskite KOsO_{3} has been stabilized under high-pressure and high-temperature conditions. It is cubic at 500 K (Pm-3m) and undergoes subsequent phase transitions to tetragonal at 320 K (P4/mmm) and rhombohedral (R-3m) at 230 K as shown from refining synchrotron x-ray powder diffraction (SXRD) data. The larger orbital overlap integral and the extended wave function of 5d electrons in the perovskite KOsO_{3} allow to explore physics from the regime where Mott and Hund's rule couplings dominate to the state where the multiple interactions are on equal footing. We demonstrate an exotic magnetic ordering phase found by neutron powder diffraction along with physical properties via a suite of measurements including magnetic and transport properties, differential scanning calorimetry, and specific heat, which provide comprehensive information for a system at the crossover from localized to itinerant electronic behavior.

3.
Inorg Chem ; 62(45): 18474-18484, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37905815

RESUMO

In this study, we successfully synthesized the double perovskite oxide Cd2FeReO6 by using a high-temperature and high-pressure method. The crystal structure was confirmed to belong to the P21/n space group, exhibiting approximately 68% ordering of Fe3+ and Re5+ ions at the perovskite B-site with the remaining regions showing antisite disorder. The measured Curie temperature of Cd2FeReO6 was 460 K, slightly lower than expected but still significantly above room temperature. Remarkably, Cd2FeReO6 displayed a remarkable low-field butterfly type tunneling magnetoresistance of -23% (-37% between the lowest and the largest values) at 5 K and 90 kOe, the highest among the A2FeReO6 (A = Ca, Sr, Pb, Ba) family. First-principles calculations provided insight into the origin of this observed magnetoresistance behavior, revealing Cd2FeReO6's half-metallic ferrimagnetic nature. This research extends our understanding of the double perovskite family and emphasizes its potential significance in the domains of spintronics and materials science. The exploration of differing magnetoresistance behaviors between Cd2FeReO6 and Ca2FeReO6, along with the influence of antisite disorder in Cd2FeReO6, opens intriguing avenues for further research.

4.
Inorg Chem ; 62(26): 10481-10489, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37349281

RESUMO

Band gap engineering using multiple anions is an established approach to novel photocatalysts that exhibit suitable band gap energies for water splitting and high photocorrosion resistance. However, few studies have been conducted on photocatalysts with polyanions, including polychalcogenide ions. Here, we present a new quaternary gallium oxysulfide with disulfide pairs (S2)2-, La4Ga2S8O3, grown out of a KI molten salt. Single-crystal X-ray diffraction analysis revealed that the oxysulfide crystallizes in the orthorhombic space group Pbcn with lattice constants of a = 18.3330(6) Å, b = 13.0590(5) Å, and c = 5.9022(3) Å. In the crystal structure, the GaS4-based zigzag chains and OLa4-based fluorite-like strips are independently arranged in two dimensions, which alternately stack via the disulfide pairs along the third direction. The oxysulfide is a direct-type semiconductor with a band gap of 2.45 eV. First-principles calculations combined with X-ray photoemission spectroscopy measurements show that S 3p states derived from the disulfide pairs dominate the valence band maximum and conduction band minimum, and these band-edge positions are suitable for the oxidation and reduction of water. Our comprehensive study based on the electronic structure suggests that the disulfide pairs make La4Ga2S8O3 a potential photocatalyst for water splitting under visible-light irradiation.

5.
Angew Chem Int Ed Engl ; 62(29): e202305994, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37199102

RESUMO

We show that cation ordering on A site columns, oppositely displaced via coupling to B site octahedral tilts, results in a polar phase of the columnar perovskite (NaY)MnMnTi4 O12 . This scheme is similar to hybrid improper ferroelectricity found in layered perovskites, and can be considered a realisation of hybrid improper ferroelectricity in columnar perovskites. The cation ordering is controlled by annealing temperature and when present it also polarises the local dipoles associated with pseudo-Jahn-Teller active Mn2+ ions to establish an additional ferroelectric order out of an otherwise disordered dipolar glass. Below TN ≈12 K, Mn2+ spins order, making the columnar perovskites rare systems in which ordered electric and magnetic dipoles may reside on the same transition metal sublattice.

6.
Inorg Chem ; 62(21): 8372-8378, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37192407

RESUMO

In this study, we successfully synthesized a novel A-site columnar-ordered perovskite CaZnV2O6. This compound features a square-planar-coordinated Zn2+ disorder, which is the same characteristic as the centrosymmetric paraelectric CaMnTi2O6. Unlike CaMnTi2O6, which shows a centrosymmetric paraelectric-noncentrosymmetric ferroelectric transition, CaZnV2O6 retains Pauli-paramagnetic metallicity arising from itinerant V4+ d1 electrons and centrosymmetry down to 5 K. Based on analogous compounds, we expect CaZnV2O6 to provide a new playground for the electronic and magnetic states of V4+.

7.
Materials (Basel) ; 16(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36837134

RESUMO

ABO3 perovskite materials with small cations at the A site, especially those with ordered cation arrangements, have attracted a great deal of interest because they show unusual physical properties and deviations from the general characteristics of perovskites. In this work, perovskite solid solutions (Lu0.5Mn0.5)(Mn1-xTix)O3 with x = 0.25, 0.50, and 0.75 were synthesized by means of a high-pressure, high-temperature method at approximately 6 GPa and approximately 1550 K. All the samples crystallize in the GdFeO3-type perovskite structure (space group Pnma) and have random distributions of the small Lu3+ and Mn2+ cations at the A site and Mn4+/3+/2+ and Ti4+ cations at the B site, as determined by Rietveld analysis of high-quality synchrotron X-ray powder diffraction data. Lattice parameters are a = 5.4431 Å, b = 7.4358 Å, c = 5.1872 Å (for x = 0.25); a = 5.4872 Å, b = 7.4863 Å, c = 5.2027 Å (for x = 0.50); and a = 5.4772 Å, b = 7.6027 Å, c = 5.2340 Å (for x = 0.75). Despite a significant dilution of the A and B sublattices by non-magnetic Ti4+ cations, the x = 0.25 and 0.50 samples show long-range ferrimagnetic order below TC = 89 K and 36 K, respectively. Mn cations at both A and B sublattices are involved in the long-range magnetic order. The x = 0.75 sample shows a spin-glass transition at TSG = 6 K and a large frustration index of approximately 22. A temperature-independent dielectric constant was observed for x = 0.50 (approximately 32 between 5 and 150 K) and for x = 0.75 (approximately 50 between 5 and 250 K).

8.
Inorg Chem ; 61(51): 21148-21156, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36516859

RESUMO

Under high-pressure and high-temperature conditions, doped Bi3Re3O11 and Bi3Os3O11 with Fe up to 29 atomic % were synthesized. The crystal structures and chemical compositions of Bi3Os2.45Fe0.55O11 and Bi3Re2.13Fe0.87O11 were determined by synchrotron powder X-ray diffraction and electron probe microanalysis. Both crystal structures were explained by a KSbO3-type model with the space group Pn3̅. Magnetic and electronic transport property measurements showed that Bi3Os2.45Fe0.55O11 exhibited a ferrimagnetic transition at the highest magnetic ordering temperature of 490 K in the KSbO3-type, while Bi3Re2.13Fe0.87O11 exhibited a spin glassy behavior below 22 K. The magnetoresistance at 5 K and 90 kOe was almost zero for Bi3Os2.45Fe0.55O11, but -10% for Bi3Re2.13Fe0.87O11. These results suggest that KSbO3- type 5d oxides, which exhibit only weak temperature-dependent paramagnetism to date, are a group of compounds that can be converted into spintronic materials by doping with 3d elements, leading to the development of new KSbO3-type materials with both theoretical and practical significance.

9.
Materials (Basel) ; 15(23)2022 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-36499803

RESUMO

Perovskite-type ABO3 oxides show a number of cation-ordered structures, which have significant effects on their properties. The rock-salt-type order is dominant for B cations, and the layered order for A cations. In this work, we prepared a new perovskite-type oxide, Sm2CuMn(MnTi3)O12, with a rare columnar A-site order using a high-pressure, high-temperature method at about 6 GPa and about 1700 K. Its crystal structure was studied with synchrotron powder X-ray diffraction. The compound crystallizes in space group P42/nmc (No. 137) at room temperature with a = 7.53477 Å and c = 7.69788 Å. The magnetic properties of the compound were studied with dc and ac magnetic susceptibility measurements and specific heat. Spin-glass (SG) magnetic properties were found with TSG = 7 K, while specific heat, in the form of Cp/T, showed a strong, very broad anomaly developing below 20 K and peaking at 4 K. The dielectric constant of Sm2CuMn(MnTi3)O12 was nearly frequency and temperature independent between 8 K and 200 K, with a value of about 50. Cu2+ doping drastically modified the magnetic and dielectric properties of Sm2CuMn(MnTi3)O12 in comparison with the parent compound Sm2MnMn(MnTi3)O12, which showed a long-range ferrimagnetic order at 34-40 K. The antisite disorder of Cu2+ and Mn2+ cations between square-planar and octahedral sites was responsible for the SG magnetic properties of Sm2CuMn(MnTi3)O12.

10.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 11): 1135-1137, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380910

RESUMO

The crystal structure of the cubic double-perovskite Sr2Cr0.84Ni0.09Os1.07O6, grown at high pressure, was solved using intensity data measured at 113 K. The Os site was modelled with a partial Ni occupancy, and the Cr site was modelled with both Os and Ni partial occupancy. The refined structure shows that this cubic form is stable at 113 K.

11.
Inorg Chem ; 61(36): 14428-14435, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36044365

RESUMO

A new member of A-site columnar-ordered A2A'A″B4O12 quadruple perovskites with the composition of Y2CuGaMn4O12 was prepared by a high-pressure, high-temperature method at 6 GPa and about 1500 K. Its crystal structure and cation distributions were studied by powder synchrotron X-ray and neutron diffraction. There is a triple A-site cation ordering with some degrees of anti-site disorder among sites occupied by 3d transition metals: [Y2]A[Cu0.8Mn0.2]A'[Ga0.8Mn0.2]A″[Mn3.6Cu0.2Ga0.2]BO12. It has the space group P42/nmc (no. 137) between 1.5 and 873 K with a = 7.33884 Å and c = 7.66251 Å at 297 K. Despite anti-site disorder, it exhibits a long-range ferrimagnetic order at TC = 115 K with the ordered moment of 2.19 µB at each B site and 0.89 µB at the A' or A″ site. Magnetic moments are aligned along the c axis; all moments are ordered ferromagnetically at the B sites, and the moments at the A' or A″ site are ordered in the opposite direction. Cu2+ doping drastically changes magnetic properties as "parent" Y2MnGaMn4O12 just shows spin-glass magnetic properties without long-range ordering. Anisotropic thermal expansion was observed in Y2CuGaMn4O12: the lattice parameter a almost linearly decreases from 1.5 K to TC and then monotonically increases up to 873 K (almost linearly from 300 K); the parameter c monotonically increases from 1.5 to 300 K and then decreases up to 600 K.

12.
Angew Chem Int Ed Engl ; 60(51): 26561-26565, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34626037

RESUMO

Chalcogenide-containing compounds have been widely studied as infrared nonlinear optical (NLO) materials. However, they have never been applied in the ultraviolet (UV) region owing to the high energy levels of chalcogen anions, leading to band gap narrowing. We report the synthesis of a new UV NLO oxysulfide La3 Ga3 Ge2 S3 O10 with an exceptionally wide band gap of 4.70 eV due to from the unique anion-ordered frameworks comprising 1D 1 ∞ [(Ga3/5 Ge2/5 )3 S3 O3 ] triangular tubes and 0D (Ga3/5 Ge2/5 )2 O7 dimers of corner-sharing (Ga/Ge)S2 O2 and (Ga/Ge)O4 tetrahedra, respectively. Second harmonic generation (SHG) measurements revealed that La3 Ga3 Ge2 S3 O10 was phase matchable with twice the SHG response of KH2 PO4 . The results of theoretical calculations suggest that the strong SHG response is mainly attributable to the S-3p and O-2p orbitals in the occupied states. The anion-directed band-gap engineering may give insights into the application of NLO oxychalcogenides in the UV regions.

13.
J Phys Condens Matter ; 33(33)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34062527

RESUMO

We have used muon spin rotation and relaxation (µSR) and23Na nuclear magnetic resonance (NMR) spectroscopic methods in the NaOsO3antiferromagnetic phase to determine the temperature evolution of the magnetic order parameter and the role of the magnetic fluctuations at the Néel temperature. Additionally, we performed muon spin relaxation measurements in the vicinity ofTA= 30 K, where the appearance of an anomaly in the electrical resistivity was suggested to be due to a progressive reduction of the Os magnetic moment associated with spin fluctuation. Our measurements suggest the absence of prominent change in the spin fluctuations frequency atTA, within the muon probing time scale and the absence of a reduction of the localized Os magnetic moment reflected by the stability within few permille of the local magnetic field strength sensed by the muons below 50 K.

14.
ACS Omega ; 6(10): 6842-6847, 2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33748598

RESUMO

A new ternary chromium disulfide, Ba9Cr4S19, has been grown out of BaCl2 molten salt. Single-crystal structure analysis revealed that it crystallizes in the centrosymmetric space group C 2/c with lattice parameters: a = 12.795(3) Å, b = 11.3269(2) Å, c = 23.2057(6) Å, ß = 104.041(3)°, and Z = 4. Ba9Cr4S19 comprises four face-sharing Cr-centered octahedra with disulfide ions occupying sites on each terminal face. The resulting Cr4S15 tetramer units are isolated by nonmagnetic Ba-centered polyhedra in the ab plane and barium disulfide (=Ba4(S2)2) layers along the c-axis. Following the structure analysis, the title compound should be expressed as [Ba2+]9[Cr3+]4[(S2)2-]4[S2-]11, which is also consistent with Cr2p X-ray photoemission spectra showing trivalent states of the Cr atoms. The unique Cr-based zero-dimensional structure with the formation of these disulfide ions can be achieved for the first time in ternary chromium sulfides, which adopt 1-3 dimensional frameworks of Cr-centered polyhedra.

15.
J Phys Condens Matter ; 33(20)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33567410

RESUMO

A high-pressure synthesis method was employed to prepare Mn-self-doped perovskites (R0.667Mn0.333)MnO3(R= Yb, Lu) at about 6 GPa and 1670 K. Crystal and magnetic structures of (Yb0.667Mn0.333)MnO3have been studied by combining neutron powder diffraction, magnetic susceptibility and specific heat measurements. Within the orthorhombic space groupPnma, magnetic cations are located on site 4c(A site, occupied by two thirds of Yb3+and one third of Mn2+) and on site 4b(B site, occupied by two thirds of Mn3+and one third of Mn4+). The degree of structural distortion of the MnO6octahedra follows the general trend of (R1-xMnx)MnO3compounds which shows a decrease with increasing amount of Jahn-Teller inactive Mn4+cations. Mn-Mn interactions produce a collinear ferrimagnetic structure (TC,Mn= 106 K) with ferromagnetically ordered Mn moments at the B site being coupled antiferromagnetically with ordered Mn moments at the A site. Mn-Yb interactions induce a small but non-zero ferromagnetic Yb3+moment which can explain a small decrease of the magnetic susceptibility at low temperature. Yb-Yb interactions create an antiferromagnetic structure atTN,Yb≈ 40 K. Ordered moments of the ferrimagnetic and antiferromagnetic structures are oriented perpendicular to each other within theac-plane and Yb3+moments contribute to both structures. The appearance of ordered Yb3+moments induced by Mn-Yb interactions in perovskite (Yb0.667Mn0.333)MnO3is a result of the Mn self-doping on the A site and has not been observed in the orthorhombic perovskite modification (space groupPnma) of the undoped parent compound YbMnO3, but interestingly, it also appears in the hexagonal non-perovskite modification (space groupP63cm) of YbMnO3.

16.
Inorg Chem ; 59(13): 9065-9076, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32515189

RESUMO

The formation of NaRMn2Ti4O12 compounds (R = rare earth) under high pressure (about 6 GPa) and high temperature (about 1750 K) conditions was studied. Such compounds with R = Sm, Eu, Gd, Dy, Ho, Y adopt an A-site columnar-ordered quadruple-perovskite structure with the generic chemical formula A2A'A″B4O12. Their crystal structures were studied by powder synchrotron X-ray and neutron diffraction between 1.5 and 300 K. They maintain a paraelectric structure with centrosymmetric space group P42/nmc (No. 137) at all temperatures, in comparison with the related CaMnTi2O6 perovskite, in which a ferroelectric transition occurs at 630 K. The centrosymmetric structure was also confirmed by second-harmonic generation. It has a cation distribution of [Na+R3+]A[Mn2+]A'[Mn2+]A″[Ti4+4]BO12 (to match with the generic chemical formula) with statistical distributions of Na+ and R3+ at the large A site and a strongly split position of Mn2+ at the square-planar A' site. We found a C-type long-range antiferromagnetic structure of Mn2+ ions at the A' and A″ sites below TN = 12 K for R = Dy and found that the presence of Dy3+ disturbs the long-range ordering of Mn2+ below a second transition at lower temperatures. The first magnetic transition occurs below 8-13 K in all compounds, but the second magnetic transition occurs only for R = Dy, Sm, Eu. All compounds show large dielectric constants of a possible extrinsic origin similar to that of CaCu3Ti4O12. NaRMn2Ti4O12 with R = Er-Lu crystallized in the GdFeO3-type Pnma perovskite structure, and NaRMn2Ti4O12 with R = La, Nd contained two perovskite phases: an AA'3B4O12-type Im3̅ phase and a GdFeO3-type Pnma phase.

17.
Front Chem ; 8: 91, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32133343

RESUMO

A new germanate garnet compound, Ce2CaMg2Ge3O12, was synthesized via flux crystal growth. Truncated spherical, reddish-orange single crystals with a typical size of 0.1-0.3 mm were grown out of a BaCl2-CaCl2 melt. The single crystals were characterized by single-crystal X-ray diffraction analysis, which revealed that it adopted a cubic garnet-type structure with a = 12.5487(3) Å in the space group Ia-3d. Its composition is best described as A 3 B 2 C 3O12, where Ce/Ca, Mg, and Ge occupied the A, B, and C sites, respectively. A UV-vis absorption spectroscopy measurement on the germanate garnet revealed a clear absorption edge corresponding to a band gap of 2.21 eV (λ = 561 nm). First-principle calculations indicated that the valence band maximum was composed of Ce 4f bands, whereas the conduction band minimum mainly consisted of Ce 5d bands. These findings explain the observed absorption edge through the Ce 4f → 5d absorption. Photoluminescence emission spectra exhibited a very broad peak centered at 600 nm, corresponding to transition from the lowest energy d level to the 4f levels.

18.
Inorg Chem ; 59(6): 4049-4057, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32096400

RESUMO

Polycrystalline Sr3OsO6, which is an ordered double-perovskite insulator, is synthesized via solid-state reaction under high-temperature and high-pressure conditions of 1200 °C and 6 GPa. The synthesis enables us to conduct a comparative study of the bulk form of Sr3OsO6 toward revealing the driving mechanism of 1000 K ferromagnetism, which has recently been discovered for epitaxially grown Sr3OsO6 films. Unlike the film, the bulk is dominated by antiferromagnetism rather than ferromagnetism. Therefore, robust ferromagnetic order appears only when Sr3OsO6 is under the influence of interfaces. A specific heat capacity of 39.6(9) × 10-3 J mol-1 K-2 is found at low temperatures (<17 K). This value is remarkably high, suggesting the presence of possible Fermionic-like excitations at the magnetic ground state. Although the bulk and film forms of Sr3OsO6 share the same lattice basis and electrically insulating state, the magnetism is entirely different between them.

19.
Dalton Trans ; 49(6): 1997-2003, 2020 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-31989124

RESUMO

Topochemical reactions between CaCrO3 and polyvinylidene difluoride yield the new fluorinated phase CaCrO2.5F0.5, which was characterized by powder synchrotron X-ray diffraction, X-ray photoemission spectroscopy, and magnetic susceptibility measurements. The reaction proceeds via reduced oxide intermediates, CaCrO2.67 and CaCrO2.5, in which CrO6 octahedral and CrO4 tetrahedral layers are stacked in a different manner along the c axis of CaCrO3. These two intermediate phases can be selectively synthesized by the carbothermal reduction with g-C3N4. Both CaCrO3 and CaCrO2.5F0.5 adopt the same orthorhombic space group, Pbnm; however, the fluorinated phase has decreased Cr-O-Cr bond angles as compared to the parent compound in both the ab plane and along the c-direction, which indicates an increased orthorhombic distortion due to the fluorination. While the oxygen vacancies are ordered in both intermediate phases, CaCrO2.67 and CaCrO2.5, a site preference for fluorine in the oxyfluoride phase cannot be confirmed. CaCrO3 and CaCrO2.5F0.5 undergo antiferromagnetic phase transitions involving spin canting, where the fluorination causes the transition temperature to increase from 90 K to 110 K, as a result of the competition between the increased octahedral tilting and the enhancement of superexchange interactions involving Cr3+ ions in the CaCrO2.5F0.5 structure.

20.
Inorg Chem ; 58(21): 14830-14841, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31638779

RESUMO

Y2MnGa(Mn4-xGax)O12 solid solutions were synthesized at high pressure of ∼6 GPa and high temperature of ∼1570 K for the 0 ≤ x ≤ 3 compositional range. Synchrotron X-ray and neutron powder diffraction were used to study the crystal structures and cation distributions. These solutions adopt the parent structure of the A-site columnar-ordered quadruple perovskite family with space group P42/nmc (No. 137). They have lattice parameters of a = 7.36095 Å and c = 7.753 84 Å (x = 0), a = 7.361 68 Å and c = 7.716 16 Å (x = 1), a = 7.360 34 Å and c = 7.67142 Å (x = 2), and a = 7.363 93 Å and c = 7.616 85 Å (x = 3) at room temperature. The x = 0 sample has a cation distribution of [Y3+2]A[Mn3+]A'[Ga3+0.68Mn2+0.32]A″[Mn3.68Ga0.32]BO12 with a preferred localization of Ga3+ in the tetrahedral A″ site and with a small amount of Ga3+ in the octahedral B site. A complete triple A-site order, [Y3+2]A[Mn3+]A'[Ga3+]A″[Mn3+4-xGa3+x]BO12, is realized for x ≥ 1. All samples demonstrate spin-glass-like magnetic properties, and the absence of a long-range magnetic order at the ground state at 1.5 K was confirmed by neutron diffraction for the x = 1 sample. First-principles calculations indicated the spin-glass-like magnetic ordering is derived from the Ga substitution to the B sites and gave evidence that the ideal cation distribution could produce robust ferromagnetism in this family of perovskites.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...