Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1352331, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38689844

RESUMO

While it is commonly understood that air temperature can greatly affect the process of photosynthesis and the growth of higher plants, the impact of root zone temperature (RZT) on plant growth, metabolism, essential elements, as well as key metabolites like chlorophyll and carotenoids, remains an area that necessitates extensive research. Therefore, this study aimed to investigate the impact of raising the RZT on the growth, metabolites, elements, and proteins of red leaf lettuce. Lettuce was hydroponically grown in a plant factory with artificial light at four different air temperatures (17, 22, 27, and 30°C) and two treatments with different RZTs. The RZT was raised 3°C above the air temperature in one group, while it was not in the other group. Increasing the RZT 3°C above the air temperature improved plant growth and metabolites, including carotenoids, ascorbic acids, and chlorophyll, in all four air temperature treatments. Moreover, raising the RZT increased Mg, K, Fe, Cu, Se, Rb, amino acids, and total soluble proteins in the leaf tissue at all four air temperatures. These results showed that raising the RZT by 3°C improved plant productivity and the metabolites of the hydroponic lettuce by enhancing nutrient uptake and activating the metabolism in the roots at all four air temperatures. Overall, this research demonstrates that plant growth and metabolites can be improved simultaneously with an increased RZT relative to air temperature. This study serves as a foundation for future research on optimizing RZT in relation to air temperature. Further recommended studies include investigating the differential effects of multiple RZT variations relative to air temperature for increased optimization, examining the effects of RZT during nighttime versus daytime, and exploring the impact of stem heating. This research has the potential to make a valuable contribution to the ongoing growth and progress of the plant factory industry and fundamental advancements in root zone physiology. Overall, this research demonstrates that plant growth and metabolites can be improved simultaneously with an increased RZT relative to air temperature. This study serves as a foundation for future research on optimizing RZT in relation to air temperature. Further recommended studies include investigating the differential effects of multiple RZT variations relative to air temperature for increased optimization, examining the effects of RZT during nighttime versus daytime, and exploring the impact of stem heating. This research has the potential to make a valuable contribution to the ongoing growth and progress of the plant factory industry and fundamental advancements in root zone physiology.

2.
J Exp Bot ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38606772

RESUMO

Plants grown under field conditions experience fluctuating light. Understanding the natural genetic variations for a similarly dynamic photosynthetic response among untapped germplasm resources, as well as the underlying mechanisms, may offer breeding strategies to improve production using molecular approaches. Here, we measured gas exchange under fluctuating light, along with stomatal density and size, in eight wild tomato species and two tomato cultivars. The photosynthetic induction response showed significant diversity, with some wild species having faster induction rates than the two cultivars. Species with faster photosynthetic induction rates had higher daily integrated photosynthesis, but lower average water use efficiency because of high stomatal conductance under natural fluctuating light. The variation in photosynthetic induction was closely associated with the speed of stomatal responses, highlighting its critical role in maximizing photosynthesis under fluctuating light conditions. Moreover, stomatal size was negatively correlated with stomatal density within a species, and plants with smaller stomata at a higher density had a quicker photosynthetic response than those with larger stomata at lower density. Our findings show that the response of stomatal conductance plays a pivotal role in photosynthetic induction, with smaller stomata at higher density proving advantageous for photosynthesis under fluctuating light in tomato species. The interspecific variation in the rate of stomatal responses could offer an untapped resource for optimizing dynamic photosynthetic responses under field conditions.

3.
Sci Adv ; 9(42): eabq3542, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37862418

RESUMO

Prevalence of impervious surface and resulting higher temperatures in urban areas, known as urban heat islands, comprises prominent characteristics in global cities. However, it is not known whether and how urban plants adapt to such heat stress. This study focused on Oxalis corniculata, which has intraspecific polymorphism in leaf color (green and red) and examined whether the leaf color variation is associated with urban heat stress. Field observations revealed that green-leaved plants were dominant in green habitats, and red-leaved individuals were dominant in urban habitats, at local (<500 meters), landscape (<50 kilometers), and global scales. Growth and photosynthesis experiments demonstrated that red-leaved individuals performed better under heat stress, while green-leaved individuals performed better under nonstressful conditions. Genome-wide SNP analysis suggests that the red leaf may have evolved multiple times from the ancestral green leaf. Overall, the results suggest that the red leaves of O. corniculata observed in cities worldwide are evidence of plant adaptive evolution due to urban heat islands.


Assuntos
Temperatura Alta , Fotossíntese , Humanos , Cidades , Fotossíntese/genética , Plantas , Folhas de Planta/genética , Resposta ao Choque Térmico , Cor
4.
Ann Bot ; 132(3): 455-470, 2023 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-37688538

RESUMO

BACKGROUND AND AIMS: Air and root zone temperatures are important environmental factors affecting plant growth and yield. Numerous studies have demonstrated that air temperature strongly affects plant growth and development. Despite the extensive literature on air temperature, comprehensive studies on the effects of root zone temperature (RZT) on plant growth, elemental composition, and pigments are limited. In this study, we carefully observed the effects of RZT in red leaf lettuce to understand its effect on lettuce growth and pigment content. METHODS: Lettuce (Lactuca sativa, red leaf cultivar 'Red Fire') was grown hydroponically in a plant factory with artificial light under three RZT treatments (15, 25, or 35 °C) for 13 days. We investigated the comprehensive effects of RZT on the production of red leaf lettuce by metabolome and ionome analyses. KEY RESULTS: The 25 °C RZT treatment achieved maximum shoot and root dry weight. The 35 °C RZT decreased plant growth but significantly increased pigment contents (e.g. anthocyanins, carotenoids). In addition, a RZT heating treatment during plant cultivation that changed from 25 to 35 °C RZT for 8 days before harvest significantly increased shoot dry weight compared with the 35 °C RZT and significantly increased pigments compared with the 25 °C RZT. The 15 °C RZT resulted in significantly less pigment content relative to the 35 °C RZT. The 15 °C RZT also resulted in shoot and root dry weights greater than the 35 °C RZT but less than the 25 °C RZT. CONCLUSIONS: This study demonstrated that plant growth and pigments can be enhanced by adjusting RZT during different stages of plant growth to attain enhanced pigment contents while minimizing yield loss. This suggests that controlling RZT could be a viable method to improve lettuce quality via enhancement of pigment content quality while maintaining acceptable yields.


Assuntos
Lactuca , Raízes de Plantas , Temperatura , Hidroponia , Antocianinas/farmacologia
5.
J Exp Bot ; 74(2): 591-599, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35981868

RESUMO

The world's population may reach 10 billion by 2050, but 10% still suffer from food shortages. At the same time, global warming threatens food security by decreasing crop yields, so it is necessary to develop crops with enhanced resistance to high temperatures in order to secure the food supply. In this review, the role of Rubisco activase as an important factor in plant heat tolerance is summarized, based on the conclusions of recent findings. Rubisco activase is a molecular chaperone determining the activation of Rubisco, whose heat sensitivity causes reductions of photosynthesis at high temperatures. Thus, the thermostability of Rubisco activase is considered to be critical for improving plant heat tolerance. It has been shown that the introduction of thermostable Rubisco activase through gene editing into Arabidopsis thaliana and from heat-adapted wild Oryza species or C4Zea mays into Oryza sativa improves Rubisco activation, photosynthesis, and plant growth at high temperatures. We propose that developing a universal thermostable Rubisco activase could be a promising direction for further studies.


Assuntos
Arabidopsis , Oryza , Termotolerância , Ribulose-Bifosfato Carboxilase/genética , Ribulose-Bifosfato Carboxilase/metabolismo , Ativador de Plasminogênio Tecidual , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Fotossíntese/fisiologia , Arabidopsis/genética , Oryza/metabolismo , Segurança Alimentar
7.
Ann Bot ; 130(3): 265-283, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35947983

RESUMO

BACKGROUND: Plants invest photosynthates in construction and maintenance of their structures and functions. Such investments are considered costs. These costs are recovered by the CO2 assimilation rate (A) in the leaves, and thus A is regarded as the immediate, short-term benefit. In photosynthesizing leaves, CO2 diffusion from the air to the carboxylation site is hindered by several structural and biochemical barriers. CO2 diffusion from the intercellular air space to the chloroplast stroma is obstructed by the mesophyll resistance. The inverses is the mesophyll conductance (gm). Whether various plants realize an optimal gm, and how much investment is needed for a relevant gm, remain unsolved. SCOPE: This review examines relationships among leaf construction costs (CC), leaf maintenance costs (MC) and gm in various plants under diverse growth conditions. Through a literature survey, we demonstrate a strong linear relationship between leaf mass per area (LMA) and leaf CC. The overall correlation of CC vs. gm across plant phylogenetic groups is weak, but significant trends are evident within specific groups and/or environments. Investment in CC is necessary for an increase in LMA and mesophyll cell surface area (Smes). This allows the leaf to accommodate more chloroplasts, thus increasing A. However, increases in LMA and/or Smes often accompany other changes, such as cell wall thickening, which diminishes gm. Such factors that make the correlations of CC and gm elusive are identified. CONCLUSIONS: For evaluation of the contribution of gm to recover CC, leaf life span is the key factor. The estimation of MC in relation to gm, especially in terms of costs required to regulate aquaporins, could be essential for efficient control of gm over the short term. Over the long term, costs are mainly reflected in CC, while benefits also include ultimate fitness attributes in terms of integrated carbon gain over the life of a leaf, plant survival and reproductive output.


Assuntos
Dióxido de Carbono , Fotossíntese , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Análise Custo-Benefício , Células do Mesofilo , Filogenia , Folhas de Planta/fisiologia
9.
J Exp Bot ; 73(10): 3109-3121, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35298629

RESUMO

Under field environments, fluctuating light conditions induce dynamic photosynthesis, which affects carbon gain by crop plants. Elucidating the natural genetic variations among untapped germplasm resources and their underlying mechanisms can provide an effective strategy to improve dynamic photosynthesis and, ultimately, improve crop yields through molecular breeding approaches. In this review, we first overview two processes affecting dynamic photosynthesis, namely (i) biochemical processes associated with CO2 fixation and photoprotection and (ii) gas diffusion processes from the atmosphere to the chloroplast stroma. Next, we review the intra- and interspecific variations in dynamic photosynthesis in relation to each of these two processes. It is suggested that plant adaptations to different hydrological environments underlie natural genetic variation explained by gas diffusion through stomata. This emphasizes the importance of the coordination of photosynthetic and stomatal dynamics to optimize the balance between carbon gain and water use efficiency under field environments. Finally, we discuss future challenges in improving dynamic photosynthesis by utilizing natural genetic variation. The forward genetic approach supported by high-throughput phenotyping should be introduced to evaluate the effects of genetic and environmental factors and their interactions on the natural variation in dynamic photosynthesis.


Assuntos
Produtos Agrícolas , Fotossíntese , Carbono , Dióxido de Carbono , Produtos Agrícolas/genética , Variação Genética , Fotossíntese/genética , Folhas de Planta
10.
Plant Mol Biol ; 110(4-5): 385-395, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35169910

RESUMO

KEY MESSAGE: The present study clearly showed that the optimum root zone temperature of photosynthesis and plant growth was affected by air temperature, and that optimization of root zone temperature depending on an air growth temperature by cooling systems could lead to improvement of plant production. Temperature is one of the critical factors affecting plant growth and yield production. Both air and root zone temperatures can strongly affect growth and development of plants. However, studies on the effects of root zone temperature on plant growth parameters along with air temperature are still limited. In the present study, the effects of air and root zone temperature on plant growth, physiological parameters and photosynthetic characteristics of lettuce plants were investigated to optimize the air and root zone temperature to achieve the best growth conditions for lettuce plants. Two air temperature treatments (30/25 and 25/20 °C at day/night temperature) and five root zone temperature treatments (15, 20, 25, 30 and 35 °C) were applied in this study. The present study showed that the maximum plant growth of lettuce plants was higher in air temperatures at 30/25 °C than in 25/20 °C. When the plants were grown at an air temperature of 30/25 °C, the optimum root zone temperature appeared to be 30 °C. However, when the plants were grown at an air temperature of 25/20 °C, the optimum root temperature decreased and appeared to be 25 °C. Furthermore, plants grown under air temperature of 30/25 °C showed greater CO2 assimilation rate, stomatal conductance, electron transport rate (ETR) at high light, and lower non-photochemical quenching (NPQ) at high light than those of 25/20 °C. These results suggest that it is necessary to control and adjust the root zone temperature based on the air temperature.


Assuntos
Lactuca , Raízes de Plantas , Temperatura , Raízes de Plantas/fisiologia , Fotossíntese , Temperatura Alta , Folhas de Planta/fisiologia
11.
Plant Physiol ; 189(1): 375-387, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35171289

RESUMO

The proton concentration gradient (ΔpH) and membrane potential (Δψ) formed across the thylakoid membrane contribute to ATP synthesis in chloroplasts. Additionally, ΔpH downregulates photosynthetic electron transport via the acidification of the thylakoid lumen. K+ exchange antiporter 3 (KEA3) relaxes this downregulation by substituting ΔpH with Δψ in response to fluctuation of light intensity. In the Arabidopsis (Arabidopsis thaliana) line overexpressing KEA3 (KEA3ox), the rate of electron transport is elevated by accelerating the relaxation of ΔpH after a shift from high light (HL) to low light. However, the plant cannot control electron transport toward photosystem I (PSI), resulting in PSI photodamage. In this study, we crossed the KEA3ox line with the line (Flavodiiron [Flv]) expressing the Flv proteins of Physcomitrium patens. In the double transgenic line (Flv-KEA3ox), electrons overloading toward PSI were pumped out by Flv proteins. Consequently, photodamage of PSI was alleviated to the wild-type level. The rate of CO2 fixation was enhanced in Flv and Flv-KEA3ox lines during HL periods of fluctuating light, although CO2 fixation was unaffected in any transgenic lines in constant HL. Upregulation of CO2 fixation was accompanied by elevated stomatal conductance in fluctuating light. Consistent with the results of gas exchange experiments, the growth of Flv and Flv-KEA3ox plants was better than that of WT and KEA3ox plants under fluctuating light.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dióxido de Carbono/metabolismo , Transporte de Elétrons , Fotossíntese/genética , Complexo de Proteína do Fotossistema I/genética , Complexo de Proteína do Fotossistema I/metabolismo , Tilacoides/metabolismo
12.
Physiol Plant ; 174(1): e13603, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34807462

RESUMO

Drought stress is a major limiting factor for crop growth and yield. Water availability in the field can cyclically change between drought and rewatering conditions, depending on precipitation patterns. Concurrently, light intensity under field conditions can fluctuate, inducing dynamic photosynthesis and transpiration during the crop growth period. The present study aimed to characterize carbon gain and water use in fluctuating light under drought and rewatering conditions in two major crops, namely rice and soybean. We conducted gas exchange measurements under fluctuating light conditions with rice and soybean plants exposed to drought treatment (9-13 days) imposed by withholding water and subsequent rewatering treatment (8-9 days). Drought stress significantly reduced the maximum CO2 assimilation rate (A) in soybean but not in rice. Under drought conditions, A increased after a step increase in light and then gradually decreased in both crops, resulting in the significant reduction of steady-state A in rice and soybean. Moreover, drought stress delayed photosynthetic induction in both crops even when it had relatively small impact on maximum A. These results suggest that the drought effects on photosynthesis should be evaluated based on induction, maximum, and steady states. The delayed photosynthetic induction under drought owing to the reduced gas diffusional conductance via stomata resulted in a substantial loss of leaf carbon gain under fluctuating light conditions. Meanwhile, rewatering, after drought, completely recovered photosynthesis under fluctuating light in both crops. Therefore, the stability of photosynthetic induction can be a promising target to improve drought tolerance during crop breeding in the future.


Assuntos
Carbono , Secas , Fotossíntese , Folhas de Planta , Água
13.
Plant Cell ; 33(8): 2618-2636, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34059919

RESUMO

In plants, vascular stem cells located in the cambium continuously undergo self-renewal and differentiation during secondary growth. Recent advancements in cell sorting techniques have enabled access to the transcriptional regulatory framework of cambial cells. However, mechanisms underlying the robust control of vascular stem cells remain unclear. Here, we identified a new cambium-related regulatory module through co-expression network analysis using multiple transcriptome datasets obtained from an ectopic vascular cell transdifferentiation system using Arabidopsis cotyledons, Vascular cell Induction culture System Using Arabidopsis Leaves (VISUAL). The cambium gene list included a gene encoding the transcription factor BES1/BZR1 Homolog 3 (BEH3), whose homolog BES1 negatively affects vascular stem cell maintenance. Interestingly, null beh3 mutant alleles showed a large variation in their vascular size, indicating that BEH3 functions as a stabilizer of vascular stem cells. Genetic analysis revealed that BEH3 and BES1 perform opposite functions in the regulation of vascular stem cells and the differentiation of vascular cells in the context of the VISUAL system. At the biochemical level, BEH3 showed weak transcriptional repressor activity and functioned antagonistically to other BES/BZR members by competing for binding to the brassinosteroid response element. Furthermore, mathematical modeling suggested that the competitive relationship between BES/BZR homologs leads to the robust regulation of vascular stem cells.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Câmbio/genética , Proteínas de Ligação a DNA/metabolismo , Visualização de Dados , Bases de Dados Genéticas , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Hipocótilo/genética , Hipocótilo/crescimento & desenvolvimento , Mutação , Floema/genética , Filogenia , Plantas Geneticamente Modificadas , Elementos de Resposta , Xilema/genética
14.
Plant Sci ; 307: 110902, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33902860

RESUMO

During leaf senescence, the degradation of photosystems and photosynthetic pigments proceeds in a coordinated manner, which would minimize the potential photodamage to cells. Both photosystem I and II are composed of core complexes and peripheral antenna complexes, with the former binding chlorophyll a and the latter binding chlorophyll a and b. Although the degradation of peripheral antenna complexes is initiated by chlorophyll degradation, it remains unclear whether the degradation of core complexes and chlorophyll is coordinated. In this study, we examined the degradation of peripheral antenna and core complexes in the Arabidopsis sgr1/sgr2/sgrl triple mutant, lacking all the isoforms of chlorophyll a:Mg2+ dechelatase. In this mutant, the degradation of peripheral antenna complexes and photosystem I core complexes was substantially retarded, but the core complexes of photosystem II were rapidly degraded during leaf senescence. On the contrary, the photosynthetic activity declined at a similar rate as in the wild type plants. These results suggest that the degradation of photosystem II core complexes is regulated independently of the major chlorophyll degradation pathway mediated by the dechelatase. The study should contribute to the understanding of the complex molecular mechanisms underlying the degradation of photosystems, which is an essential step during leaf senescence.


Assuntos
Envelhecimento/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Clorofila/metabolismo , Liases/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/metabolismo , Envelhecimento/genética , Clorofila/genética , Variação Genética , Mutação , Complexo de Proteína do Fotossistema II/genética
15.
Front Plant Sci ; 12: 646144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33868345

RESUMO

Vapor pressure deficit (VPD) is considered to be one of the major environmental factors influencing stomatal functions and photosynthesis, as well as plant growth in crop and horticultural plants. In the greenhouse cultivation, air temperature and relative air humidity are regulated by switching on/off the evaporative systems and opening/closing the roof windows, which causes VPD fluctuation. However, it remains unclear how VPD fluctuation affects photosynthetic and growth performance in plants. Here, we examined the effects of the VPD fluctuation on the photosynthetic and growth characteristics in lettuce (Lactuca sativa L.). The parameters for gas exchange and chlorophyll fluorescence and biomass production were evaluated under the conditions of drastic (1.63 kPa for 6 min and 0.63 for 3 min) or moderate (1.32 kPa for 7 min and 0.86 kPa for 3 min) VPD fluctuation. The drastic VPD fluctuation induced gradual decrease in stomatal conductance and thus CO2 assimilation rate during the measurements, while moderate VPD fluctuation caused no reduction of these parameters. Furthermore, data showed moderate VPD fluctuation maintained leaf expansion and the efficiency of CO2 diffusion across leaf surface, resulting in enhanced plant growth compared with drastic VPD fluctuation. Taken together, fine regulation of VPD can be crucial for better plant growth by maintaining the photosynthetic performance in lettuce. The present work demonstrates the importance of VPD control during plant cultivation in plant factories and greenhouses.

16.
Photosynth Res ; 149(1-2): 69-82, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33817762

RESUMO

When intact green leaves are exposed to the fluctuating light, in which high light (HL) and low light (LL) alternate, photosystem I (PSI) is readily damaged. This PSI inhibition is mostly alleviated by the addition of far-red (FR) light. Here, we grew Alocasia odora, a shade-tolerant species, at several light levels and examined their photosynthetic traits in relation to the fluctuating light-induced PSI inhibition. We found that, even in the absence of FR, PSI in LL-grown leaves was resistant to the fluctuating light. LL leaves showed higher chlorophyll (Chl) contents on leaf area basis, lower Chl a/b ratios, lower cytochrome f/P700 ratios, and lower PSII/PSI excitation ratios assessed by the 77 K fluorescence. Also, P700 in the HL phase of the fluctuating light was more oxidized. The results of the regression analyses of the PSI photoinhibition to these traits indicate that the lower electron flow rate to P700 and more excitation energy transfer to PSI protect PSI in LL-grown leaves. Both of these contribute oxidization of P700 to the efficient quencher form P700+. These features may be common in LL-grown shade-tolerant species, which are often exposed to strong sunflecks in their natural habitats.


Assuntos
Adaptação Ocular/fisiologia , Alocasia/metabolismo , Arabidopsis/metabolismo , Citocromos f/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Folhas de Planta/metabolismo , Luz Solar/efeitos adversos
17.
Plant Cell Environ ; 44(7): 2308-2320, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33745135

RESUMO

Global warming threatens food security by decreasing crop yields through damage to photosynthetic systems, especially Rubisco activation. We examined whether co-overexpression of Rubisco and Rubisco activase improves the photosynthetic and growth performance of rice under high temperatures. We grew three rice lines-the wild-type (WT), a Rubisco activase-overexpressing line (oxRCA) and a Rubisco- and Rubisco activase-co-overexpressing line (oxRCA-RBCS)-and analysed photosynthesis and biomass at 25 and 40°C. Compared with the WT, the Rubisco activase content was 153% higher in oxRCA and 138% higher in oxRCA-RBCS, and the Rubisco content was 27% lower in oxRCA and similar in oxRCA-RBCS. The CO2 assimilation rate (A) of WT was lower at 40°C than at 25°C, attributable to Rubisco deactivation by heat. On the other hand, that of oxRCA and oxRCA-RBCS was maintained at 40°C, resulting in higher A than WT. Notably, the dry weight of oxRCA-RBCS was 26% higher than that of WT at 40°C. These results show that increasing the Rubisco activase content without the reduction of Rubisco content could improve yield and sustainability in rice at high temperature.


Assuntos
Resposta ao Choque Térmico/fisiologia , Oryza/fisiologia , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Biomassa , Clorofila/genética , Clorofila/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Ribulose-Bifosfato Carboxilase/genética , Termotolerância , Zea mays/genética
18.
Plant Physiol ; 185(1): 108-119, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631807

RESUMO

Rubisco limits C3 photosynthesis under some conditions and is therefore a potential target for improving photosynthetic efficiency. The overproduction of Rubisco is often accompanied by a decline in Rubisco activation, and the protein ratio of Rubisco activase (RCA) to Rubisco (RCA/Rubisco) greatly decreases in Rubisco-overproducing plants (RBCS-ox). Here, we produced transgenic rice (Oryza sativa) plants co-overproducing both Rubisco and RCA (RBCS-RCA-ox). Rubisco content in RBCS-RCA-ox plants increased by 23%-44%, and RCA/Rubisco levels were similar or higher than those of wild-type plants. However, although the activation state of Rubisco in RBCS-RCA-ox plants was enhanced, the rates of CO2 assimilation at 25°C in RBCS-RCA-ox plants did not differ from that of wild-type plants. Alternatively, at a moderately high temperature (optimal range of 32°C-36°C), the rates of CO2 assimilation in RBCS-ox and RBCS-RCA-ox plants were higher than in wild-type plants under conditions equal to or lower than current atmospheric CO2 levels. The activation state of Rubisco in RBCS-RCA-ox remained higher than that of RBCS-ox plants, and activated Rubisco content in RCA overproducing, RBCS-ox, RBCS-RCA-ox, and wild-type plants was highly correlated with the initial slope of CO2 assimilation against intercellular CO2 pressures (A:Ci) at 36°C. Thus, a simultaneous increase in Rubisco and RCA contents leads to enhanced photosynthesis within the optimal temperature range.


Assuntos
Aclimatação/fisiologia , Dióxido de Carbono/metabolismo , Temperatura Alta , Oryza/metabolismo , Fotossíntese/fisiologia , Proteínas de Plantas/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Aclimatação/genética , Produtos Agrícolas/genética , Produtos Agrícolas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Oryza/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Ribulose-Bifosfato Carboxilase/genética
19.
Plant Physiol ; 185(1): 146-160, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33631811

RESUMO

The dynamics of leaf photosynthesis in fluctuating light affects carbon gain by plants. Mesophyll conductance (gm) limits CO2 assimilation rate (A) under the steady state, but the extent of this limitation under non-steady-state conditions is unknown. In the present study, we aimed to characterize the dynamics of gm and the limitations to A imposed by gas diffusional and biochemical processes under fluctuating light. The induction responses of A, stomatal conductance (gs), gm, and the maximum rate of RuBP carboxylation (Vcmax) or electron transport (J) were investigated in Arabidopsis (Arabidopsis thaliana (L.)) and tobacco (Nicotiana tabacum L.). We first characterized gm induction after a change from darkness to light. Each limitation to A imposed by gm, gs and Vcmax or J was significant during induction, indicating that gas diffusional and biochemical processes limit photosynthesis. Initially, gs imposed the greatest limitation to A, showing the slowest response under high light after long and short periods of darkness, assuming RuBP-carboxylation limitation. However, if RuBP-regeneration limitation was assumed, then J imposed the greatest limitation. gm did not vary much following short interruptions to light. The limitation to A imposed by gm was the smallest of all the limitations for most of the induction phase. This suggests that altering induction kinetics of mesophyll conductance would have little impact on A following a change in light. To enhance the carbon gain by plants under naturally dynamic light environments, attention should therefore be focused on faster stomatal opening or activation of electron transport.


Assuntos
Adaptação Ocular/fisiologia , Arabidopsis/fisiologia , Transporte de Elétrons/fisiologia , Células do Mesofilo/fisiologia , Nicotiana/fisiologia , Fotossíntese/fisiologia , Estômatos de Plantas/fisiologia , Escuridão
20.
Front Plant Sci ; 11: 589603, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193542

RESUMO

Stomatal density (SD) is closely associated with photosynthetic and growth characteristics in plants. In the field, light intensity can fluctuate drastically within a day. The objective of the present study is to examine how higher SD affects stomatal conductance (g s ) and CO2 assimilation rate (A) dynamics, biomass production and water use under fluctuating light. Here, we compared the photosynthetic and growth characteristics under constant and fluctuating light among three lines of Arabidopsis thaliana (L.): the wild type (WT), STOMAGEN/EPFL9-overexpressing line (ST-OX), and EPIDERMAL PATTERNING FACTOR 1 knockout line (epf1). ST-OX and epf1 showed 268.1 and 46.5% higher SD than WT (p < 0.05). Guard cell length of ST-OX was 10.0% lower than that of WT (p < 0.01). There were no significant variations in gas exchange parameters at steady state between WT and ST-OX or epf1, although these parameters tended to be higher in ST-OX and epf1 than WT. On the other hand, ST-OX and epf1 showed faster A induction than WT after step increase in light owing to the higher g s under initial dark condition. In addition, ST-OX and epf1 showed initially faster g s induction and, at the later phase, slower g s induction. Cumulative CO2 assimilation in ST-OX and epf1 was 57.6 and 78.8% higher than WT attributable to faster A induction with reduction of water use efficiency (WUE). epf1 yielded 25.6% higher biomass than WT under fluctuating light (p < 0.01). In the present study, higher SD resulted in faster photosynthetic induction owing to the higher initial g s . epf1, with a moderate increase in SD, achieved greater biomass production than WT under fluctuating light. These results suggest that higher SD can be beneficial to improve biomass production in plants under fluctuating light conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...