Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 473: 134702, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38788589

RESUMO

To reveal the feedbacks and regulating mechanisms of microplastic types and doses on microbial community, a microcosm experiment was carried out with two non-degradable microplastics [polyethylene (PE) and polyvinyl chloride (PVC)] and four biodegradable microplastics [poly(butylene succinate) (PBS), polyhydroxyalkanoates (PHA), poly(butyleneadipate-co-terephthalate) (PBAT), and polypropylene carbonate (PPC)] at different levels (1 %, 7 %, and 28 %). As a result, the content of total carbon (TC), soil organic carbon (SOC), and microbial biomass carbon (MBC) (expect MBC in PBS soil) increased with increasing doses of microplastics, and increased at the lowest PE dose rate. Biodegradable microplastics created a more active ecological niche while enriching more pathogens than non-degradable microplastics. Structural equation modeling indicated that microbial diversities were in a type-dependent assembly, whereas microbial compositions were more profoundly affected by the microplastic doses, ultimately. The standardized total effect coefficient of microplastic types on bacterial and fungal diversities was - 0.429 and - 0.282, and that of doses on bacterial and fungal compositions was 0.487 and 0.336, respectively. Both microplastic types and doses significantly impacted pH, electrical conductivity, total nitrogen, TC, SOC, and MBC, subsequently inhibiting microbial diversities and stimulating microbial compositions with particular pathways. The results provide a comprehensive understanding for evaluating the potential risk of microplastics.

2.
Huan Jing Ke Xue ; 45(2): 1185-1195, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471955

RESUMO

Microplastics are an emerging contaminant that can persist in the environment for extended periods, posing risks to ecological systems. Recently, microplastic pollution has emerged as a major global environmental problem. In order to ensure accurate and scientific evaluation of the ecological risks associated with microplastic pollution, it is of paramount importance to improve the simplicity and reliability of microplastic identification, systematically analyze the pollution characteristics of microplastics in various environmental media, and clarify their environmental impacts. Machine learning technology has gained widespread attention in microplastic research by learning and analyzing large volumes of data to establish result evaluation or prediction models. The use of machine learning can enhance the automation and identification efficiency of visual and spectral identification of microplastics, provide scientific support for tracing the sources of microplastic pollution, and help reveal the complex environmental effects of microplastics. This review provides a summary of the application characteristics and limitations of machine learning in the aforementioned areas by reviewing the progress made in research that employs machine learning technology in microplastic identification and environmental risk assessment. Furthermore, the findings of the review will provide suggestions and prospects for the development and application of machine learning in related areas.

3.
J Hazard Mater ; 465: 133472, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38219587

RESUMO

Microplastic pollution, a major global concern, has garnered increasing attention in agricultural ecosystem research. China's Hetao Irrigation District, vital for grain production in the Yellow River Basin, lacks sufficient research on microplastic pollution of agricultural soils. This study, based on a detailed background investigation and testing of 47 samples, is the first to elucidate the characteristics and potential influencing factors of microplastics in the Hetao Irrigation District. The abundance of microplastics in the farmland soil ranged from 1810 to 86331 items/kg, with 90% measuring below 180 µm and mainly in film and fragment forms. Predominant polymers were polyethylene (PE, 43.0%) and polyamide (PA, 27.8%). Key pollution influencers were identified as agricultural inputs, with low-density polyethylene (LDPE) being the most extensively used plastic type. The carbonyl index and hydroxyl indices of the detected LDPE microplastics ranged from 0.041 to 0.96 and 0.092 to 1.20, respectively. The study highlights the significance of mulching management and agronomic practices in shaping microplastic characteristics. Potential pollution sources include agricultural inputs, irrigation equipment, domestic waste, and tire wear. Proposed effective strategies include responsible plastic use, robust waste management, and irrigation system upgrades, establishing a foundation for future ecological risk assessments and effective management approaches in the Hetao Irrigation District. ENVIRONMENTAL IMPLICATION: The harmful substances studied in this paper are microplastics, which are widely distributed in the environment and have potential ecological risks. This study is the first to investigate the characteristics of microplastics in farmland soil within the Hetao Irrigation Area, a region that is of critical importance to agricultural production in the Yellow River Basin of China. The study provides comprehensive insights into the factors influencing the characteristics of microplastics and speculates on their sources. These findings offer a novel perspective on the assessment of microplastic contamination in the area and provide valuable recommendations for prevention and control measures.

4.
Sci Total Environ ; 905: 166935, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37690755

RESUMO

There is a major knowledge gap concerning the extent of microplastic pollution in agronomic regions of China, which represent a plastic use hotspot. In order to clarify the amendment of agronomic region and plastic film mulching mode to microplastics distribution, the characteristics of microplastics distributed in agricultural soils from three typical regions (Beijing (BJ), Shandong (SD), and Xinjiang (XJ)) with two plastic film mulching modes (greenhouse (G) and conventional field-based film mulching (M)) in China were investigated. Microplastics weight and their response to planting regions were also evaluated in this study. The result showed that the average abundance of microplastics in soils from BJ, SD, and XJ was 1.83 × 104 items kg-1, 4.02 × 104 items kg-1, and 3.39 × 104 items kg-1, and the estimated weight of microplastics per kg of dry soils was 3.12 mg kg-1, 5.63 mg kg-1, and 7.99 mg kg-1, respectively. Microplastics in farmland were mainly of small particle size (50 to 250 µm), with their abundance decreasing with increasing particle size. Among the microplastics detected, polyethylene and polypropylene were the two dominant types present, accounting for 50.0% and 19.7%, respectively. The standard total effect of planting regions on microplastic number and weight was 31.8% and 32.3%, and plastic film mulching modes (G vs. M) could explain 34.4% of the total variation of microplastic compositions with a contribution rate of 65.6% in this study. This research provides key data for an assessment of the environmental risk of microplastics and supports the development of guidelines for the sustainable use of agricultural plastic film. Further, it is necessary to quantify and assess the contribution of other different plastic sources to microplastics in soil. Big data technologies or isotope tracer techniques may be promising approaches.

5.
J Hazard Mater ; 459: 132068, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37494798

RESUMO

Microplastics are widely distributed in the environment and pose potential ecological risks, increasing to be one of the most important environmental pollutants. However, when assessing the characteristics of microplastic contamination in environmental samples, inadequate quality control measures for the working solutions may introduce additional microplastic contamination and lead to an overestimation of microplastic abundance in the samples. In this study, we evaluated the microplastic contamination characteristics in commonly used flotation and digestion reagents to assess errors caused by microplastics in the reagents. The results showed that the abundance of microplastics in the reagents ranged from 0.8 to 43.4 items/g, with the abundance of microplastics in flotation reagents being lower than that in digestion reagents. The shapes of the detected microplastics included particles, fibers, and fragments, and their size and outline were generally small, with most being below 100 µm. The most common types of polymers detected were polyethylene and polypropylene. In order to improve the universality and readability of the results, the detected microplastic abundances were converted into the actual application concentration of the working fluid. It was found that the potential contamination of microplastics in untreated flotation solutions ranged from 1.5 to 30.8 items/mL, while in digestion solutions ranged from 0.1 to 2.3 items/mL. Our study emphasizes the need for quality control measures, such as suction filtration, when evaluating microplastics in environmental samples or conducting chemical and biological tests related to microplastics.

6.
Sci Total Environ ; 880: 162984, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-36963692

RESUMO

Soil mulching technologies are effective practices which alleviate non-point source pollution and carbon emissions, while ensuring grain production security and increasing water productivity. However, the lack of comprehensive understanding of the impacts of mulching technologies on rice fields has hindered progress in global implementation due to the varying environments and application conditions under which they are implemented. This study conducted a meta-analysis based on 2412 groups of field experiment data from 313 studies to evaluate the effects of soil mulching methods on rice production, greenhouse gas (GHG) emissions and water use efficiency. The results show that plastic mulching, straw mulching and no mulching (PM, SM and NM) have reduced CH4 emissions (68.8 %, 61.4 % and 57.2 %), increased N2O emissions (84.8 %, 89.1 % and 96.6 %), reduced global warming potentials (50.7 %, 47.5 % and 46.8 %) and improved water use efficiency (50.2 %, 40.9 % and 34.0 %) compared with continuous flooding irrigation. However, PM increased rice yield (1.6 %), while SM and NM decreased yield (4.3 % and 9.2 %). Furthermore, analysis using random forest models revealed that rice yield, GHG emissions and WUE response to soil mulching were related to climate, soil properties, fertilizer and rice varieties. Our findings can guide the implementation of plastic mulching technology in priority areas, contribute to agricultural carbon neutrality and support the development of practical guidelines for farmers.


Assuntos
Gases de Efeito Estufa , Oryza , Gases de Efeito Estufa/análise , Plásticos , Óxido Nitroso/análise , Agricultura/métodos , Solo , Fertilizantes/análise , Carbono , Água , Metano/análise , China
7.
Sci Total Environ ; 814: 152572, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-34954175

RESUMO

Upon environmental weathering, plastic materials form smaller sized microplastics, of which the contamination in agricultural fields is of significant importance and increasing social concern. Plastic mulch films are considered a major source of agricultural soil microplastic pollution. However, the mechanism and kinetics of microplastic formation from plastic mulch films were rarely understood. In this study, the rate of microplastic generation from typical mulch films, such as oxodegradable, biodegradable, and conventional non-degradable (polyethylene, PE) mulch films, were quantified in soil under simulated UV irradiation. Results showed that microplastic formation was more rapid from biodegradable mulch film, followed sequentially by oxodegradable mulch film, white PE mulch film, and black PE mulch film. The kinetics of microplastic generation strictly followed the Schwarzchild's law, with exponential growth at indexes between 1.6309 and 2.0502 in the microplastic generation model. At a cumulative UV irradiation of 2.1 MJ/m2, the average quantity of microplastics released from biodegradable, oxodegradable, and white and black non-degradable mulch films were 475, 266, 163, 147 particles/cm2, respectively; with particle sizes largely distributed within 0.02-0.10 mm range. Concurrent increase in crystallinity and surface erosion of the mulch films were observed upon UV irradiation, which further determined the accessibility and activity of the materials to photo-oxidation (reflected as HI indexes), therefore played a critical role on the quantity and size ranges of microplastic debris.


Assuntos
Microplásticos , Solo , Agricultura , Cinética , Plásticos
8.
Ecol Evol ; 11(12): 7211-7225, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188807

RESUMO

Predicting the change in carbon storage in regions of high carbon uptake and those under highly intensive human disturbance is crucial for regional ecosystem management to promote sustainable development of the economy and ecology in the future. We use a process-based model to estimate the terrestrial carbon storage in Yangtze River Economic Belt (YREB) and to predict the change of carbon storage over the next 100 years. The results show that the vegetation carbon (VC) and soil organic carbon (SOC) storage were 8.97 and 28.85 Pg C in the YREB from 1981 to 2005, respectively. The highest VC density is distributed in the southern region of the YREB, and the highest SOC density distributes in subalpine and alpine area of the western region of the YREB. Carbon storage in the YREB continued to increase from 1981 to 2005 and in future projections, under both the representative concentration pathway 4.5 (RCP4.5) and the RCP8.5 scenarios. The increased rate of carbon storage in the YREB under the RCP8.5 scenario is higher than that under the RCP4.5 scenario. Under the RCP4.5 scenario, the increasing trend of VC storage tends to be reduced after the 2060s; conversely, the increase of both VC and SOC is accelerated after the 2050s under the RCP8.5 scenario. The SOC density in Western Sichuan will decrease in the future, especially under the RCP8.5 scenario. Western Sichuan has the highest SOC density in the YREB; therefore, it is important to manage the ecosystems there in order to cope with significant warming. The positive impact of warming and the CO2 fertilization effect on vegetation growth and carbon uptake will be predominantly attributed to the increase of terrestrial carbon storage in the YREB. However, warming will stimulate the decomposition of soil organic carbon, contributing directly to reducing SOC storage in high-altitude regions (e.g., alpine and subalpine regions of Western Sichuan).

9.
Ying Yong Sheng Tai Xue Bao ; 32(3): 799-809, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33754544

RESUMO

Forests play an important role in regulating climate change and maintaining carbon balance. To explore the carbon storage and carbon sequestration rate of national forest parks is of great significance for carbon sequestration capacity assessment and sustainable forest management. A process-based ecosystem model (CEVSA2 model) was used to simulate the spatial distribution of carbon density, carbon storage and carbon sequestration rate of 881 national forest parks in China during 1982-2017. The results showed that the average carbon density of national forest parks was 255.18 t C·hm-2, being higher than the average carbon density of forest ecosystem in China. In 2017, the total carbon storage of national forest parks increased to 3.56 Pg C, accounting for 11.0%-12.2% of the total carbon storage in national forest ecosystems. During 1982-2017, the average carbon sequestration rate of national forest parks reached 0.45 t C·hm-2·a-1, and the carbon sequestration rate of all national forest parks was above 0.30 t C·hm-2·a-1. National forest parks in the northeast and southwest of China had the highest total carbon storage. The national forest parks in northeast of China had the highest soil organic carbon sequestration rate, while those in eastern China and central southern China had the highest biomass carbon sequestration rate. The area of national forest parks accounted for 5.8% of the total forest area of China, playing an important role in forest carbon sink management of China. Accurate assessment of the growth status, carbon sequestration potential and carbon absorption characteristics of national forest parks could provide reference for the comprehensive assessment of ecosystem service of forest parks in China.


Assuntos
Sequestro de Carbono , Carbono , Biomassa , Carbono/análise , China , Ecossistema , Florestas , Solo , Árvores
10.
Environ Pollut ; 260: 114096, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32041035

RESUMO

Plastic mulching is suspected to be a significant source of microplastics in terrestrial environments owing to its intensive application and improper disposal. However, there has been a comparative lack of studies examining this hypothesis. In this study, the occurrence of macroplastics in agricultural soils was investigated by analysing 384 soil samples collected from 19 provinces across China. Additionally, the abundance of microplastics was investigated in potential hotspots that have carried out plastic mulching for over 30 years. Macroplastic concentrations in the soil samples ranged from 0.1 to 324.5 kg/ha, with an average of 83.6 kg/ha; the concentrations were higher in western China than in eastern China. A highly significant linear correlation (R2 = 0.61) was found between the consumption of mulching film and the plastic residue in soils, indicating plastic film mulching may be a major source of macroplastics. The abundances of microplastic particles increased over time in the locations where plastic mulching was continuously employed, with concentrations of 80.3 ± 49.3, 308 ± 138.1, and 1075.6 ± 346.8 pieces/kg soil in fields with 5, 15, and 24 y of continuous mulching, respectively. Fourier transform infrared analyses revealed that the composition of the microplastics matched that of the mulching films, suggesting the microplastic particles originated from the mulching films. These findings confirm that plastic mulching is an important source of macroplastic and microplastic contamination in terrestrial environments. Further studies to investigate the microplastic hazards in soils are thus necessary.


Assuntos
Agricultura , Microplásticos , Poluentes do Solo , China , Monitoramento Ambiental , Plásticos , Solo
12.
Sci Total Environ ; 703: 134722, 2020 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-31767311

RESUMO

It is now widely acknowledged that microplastic pollution represents one of the greatest anthropogenically mediated threats to Earth-system functioning. In freshwater and marine ecosystems the presence of large amounts of microplastic appears almost ubiquitous, with frequent reports of negative impacts on aquatic health. In contrast, however, the impact of plastic in terrestrial environments remains poorly understood. In agroecosystems, microplastics (particles < 5 mm) can enter the soil environment either directly (e.g. from biosolids application, irrigation water, atmospheric deposition), or indirectly through the in situ degradation of large pieces of plastic (e.g. from plastic mulch films). Although we have encouraged the use of plastics over the last 50 years in agriculture to promote greater resource use efficiency and food security, the legacy of this is that many soils are now contaminated with large amounts of plastic residue (ca. 50-250 kg ha-1). Due to difficulties in separating and quantifying plastic particles from soil, our knowledge of their behavior, fate and potential to transfer to other receptors (e.g. surface and groundwater, air) and enter the human food chain remains poor. This information, however, is critical for evaluating the risk of soil-borne microplastic pollution. In this critical review, we systematically summarize (i) the distribution and migration of microplastics in soils, (ii) highlight the separation, extraction, and identification methods for monitoring microplastics in soils, (iii) discuss the ecological effects and pollution mechanisms of soil microplastics, (iv) propose mitigation strategies to help prevent and reduce microplastic pollution, and (v) identify the most important future challenges in soil microplastics research.

13.
Sci Total Environ ; 651(Pt 1): 484-492, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30243168

RESUMO

China is a large agricultural country, and food security is significantly limited by the shortage of water resources. Plastic mulching technology can effectively modify the crop growth environment and crop production due to differences in climatic conditions, spatial distribution characteristics, and cropping systems and methods. In this study, a meta-analysis was conducted to quantitatively analyze the effects of plastic film mulching and residual plastic on yield and water use efficiency (WUE) of maize, wheat, potato, and cotton in China based on 266 peer-reviewed publications. The results showed that plastic mulching significantly increased crop yield (24.32%) and WUE (27.63%). Plastic mulching had the greatest effect of potato on yield (30.62%) and WUE (30.34%) in China. At a regional scale, plastic mulching performed best in Northwest China, and crop yield and WUE were influenced by film color, mulching method, and crop type. Black film and ridge row mulching were more favorable to crop growth and increased crop yield and WUE in arid areas of China. There was no significant effect on crop yield of residual plastic between 0 and 240 kg/ha, but the yield decreased significantly with increased time and residual plastic film >240 kg/ha. In conclusion, although plastic mulching can significantly increase crop yield and WUE, especially in dryland agriculture, we should also improve the technology for recovering residual plastic film to protect the environment.

14.
Ecol Evol ; 7(17): 6736-6746, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28904755

RESUMO

The response of ecosystems to different magnitudes of climate warming and corresponding precipitation changes during the last few decades may provide an important reference for predicting the magnitude and trajectory of net primary productivity (NPP) in the future. In this study, a process-based ecosystem model, Carbon Exchange between Vegetation, Soil and Atmosphere (CEVSA), was used to investigate the response of NPP to warming at both national and subregional scales during 1961-2010. The results suggest that a 1.3°C increase in temperature stimulated the positive changing trend in NPP at national scale during the past 50 years. Regardless of the magnitude of temperature increase, warming enhanced the increase in NPP; however, the positive trend of NPP decreased when warming exceeded 2°C. The largest increase in NPP was found in regions where temperature increased by 1-2°C, and this rate of increase also contributed the most to the total increase in NPP in China's terrestrial ecosystems. Decreasing precipitation depressed the positive trend in NPP that was stimulated by warming. In northern China, warming depressed the increasing trend of NPP and warming that was accompanied by decreasing precipitation led to negative changing trends in NPP in large parts of northern China, especially when warming exceeded 2°C. However, warming stimulated the increase in NPP until warming was greater than 2°C, and decreased precipitation helped to increase the NPP in southern China.

15.
Sci Rep ; 7(1): 8468, 2017 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-28814759

RESUMO

Information about the effect of plastic film mulching (PFM) on the soil microbial communities of rainfed regions remains scarce. In the present study, Illumina Hiseq sequencer was employed to compare the soil bacterial and fungal communities under three treatments: no mulching (NM), spring mulching (SM) and autumn mulching (AM) in two layers (0-10 and, 10-20 cm). Our results demonstrated that the plastic film mulching (PFM) application had positive effects on soil physicochemical properties as compared to no-mulching (NM): higher soil temperature (ST), greater soil moisture content (SMC) and better soil nutrients. Moreover, mulching application (especially AM) caused a significant increase of bacterial and fungal richness and diversity and played important roles in shaping microbial community composition. These effects were mainly explained by the ST and SMC induced by the PFM application. The positive effects of AM and SM on species abundances were very similar, while the AM harbored relatively more beneficial microbial taxa than the SM, e.g., taxa related to higher degrading capacity and nutrient cycling. According to the overall effects of AM application on ST, SMC, soil nutrients and microbial diversity, AM is recommended during maize cultivation in rain-fed region of northeast China.


Assuntos
Agricultura/métodos , Microbiota , Microbiologia do Solo , Solo/química , Bactérias/classificação , China , Fungos/classificação , Chuva , Estações do Ano , Temperatura , Água
16.
BMC Plant Biol ; 17(1): 41, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28187710

RESUMO

BACKGROUND: Soil salinity and alkalinity present a serious threat to global agriculture. However, most of the studies have focused on neutral salt stress, and the information on the metabolic responses of plants to alkaline salt stress is limited. This investigation aimed at determining the influence of neutral salt and alkaline salt stresses on the content of metal elements and metabolites in maize plant tissues, by using mixtures of various proportions of NaCl, NaHCO3, Na2SO4, and Na2CO3. RESULTS: We found that alkaline salt stress suppressed more pronouncedly the photosynthesis and growth of maize plants than salinity stress. Under alkaline salt stress conditions, metal ions formed massive precipitates, which ultimately reduced plant nutrient availability. On the other hand, high neutral salt stress induced metabolic changes in the direction of gluconeogenesis leading to the enhanced formation of sugars as a reaction contributing to the mitigation of osmotic stress. Thus, the active synthesis of sugars in shoots was essential to the development of salt tolerance. However, the alkaline salt stress conditions characterized by elevated pH values suppressed substantially the levels of photosynthesis, N metabolism, glycolysis, and the production of sugars and amino acids. CONCLUSIONS: These results indicate the presence of different defensive mechanisms responsible for the plant responses to neutral salt and alkaline salt stresses. In addition, the increased concentration of organic acids and enhanced metabolic energy might be potential major factors that can contribute to the maintenance intracellular ion balance in maize plants and counteract the negative effects of high pH under alkaline salt stress.


Assuntos
Plântula/metabolismo , Estresse Fisiológico/fisiologia , Zea mays/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Metaboloma/fisiologia , Metais/metabolismo , Análise Multivariada , Pressão Osmótica , Fotossíntese/efeitos dos fármacos , Salinidade , Tolerância ao Sal , Plântula/efeitos dos fármacos , Plântula/fisiologia , Cloreto de Sódio/farmacologia , Sulfatos/farmacologia , Zea mays/efeitos dos fármacos , Zea mays/fisiologia
17.
Front Plant Sci ; 7: 1785, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27933088

RESUMO

Soil salinization is an important agriculture-related environmental problem. Alkali stress and salt stress strongly influence the metabolic balance in plants. Salt and alkali stresses exert varied effects on old and young tissues, which display different adaptive strategies. In this study, we used cotton (Gossypium hirsutum L.) plants as experimental material to investigate whether alkali stress induces ionic and metabolism changes in old and young leaves of cotton plants exposed to alkali stress. Results showed that alkali stress exerted a considerably stronger growth inhibition on old leaves than on young leaves. Under alkali stress, young leaves can maintain low Na and high K contents and retain relatively stable tricarboxylic acid cycle, resulting in greater accumulation of photosynthetic metabolites. In terms of metabolic response, the young and old leaves clearly displayed different mechanisms of osmotic regulation. The amounts of inositol and mannose significantly increased in both old and young leaves of cotton exposed to alkali stress, and the extent of increase was higher in young leaves than in old leaves. In old leaves, synthesis of amino acids, such as GABA, valine, and serine, was dramatically enhanced, and this phenomenon is favorable for osmotic adjustment and membrane stability. Organs at different developmental stages possibly display different mechanisms of metabolic regulation under stress condition. Thus, we propose that future investigations on alkali stress should use more organs obtained at different developmental stages.

18.
Sheng Wu Gong Cheng Xue Bao ; 32(6): 748-760, 2016 Jun 25.
Artigo em Chinês | MEDLINE | ID: mdl-29019184

RESUMO

Plastic film has become an important agriculture production material in recent years. Over the past three decades, the amount and application area of plastic film have increased steadily, and in 2014, which are 1.4 million tons and more than 180 million hm² respectively. It plays a key role for ensuring the supply of agricultural goods in China. Meanwhile, plastic film residual pollution becomes more and more serious, and in some regions, the amount of plastic film residues has reached over 250 kg/hm². In part of the Northwest region, soil structure of farmland has been destroyed by plastic film residues and then crop growth and farming operations were suppressed. It is recognized as a good choice to replace plastic film with biodegradable plastic film, an effective measure to solve the plastic film residue pollution. Now, it is in a critical stage of study and assessment of biodegradable plastic film in China and fortunately some biodegradable plastic films show effects in the production of potatoes, peanuts and tobacco. Overall, a series of challenges has still been faced by the biodegradable plastic film, mainly including improving the quality of biodegradable plastic products, such as tensile strength, flexibility, improving the controllability of rupture and degradation, enhancing the ability of increasing soil temperature and preserving soil moisture, and to satisfy the demand of crops production with mulching. In addition, it is essential to reduce the cost of the biodegradable film and promote the application of biodegradable film on large-scale. With the development of biodegradable plastic technology and agricultural production environment, the application of the biodegradable film will have a good future.


Assuntos
Agricultura , Plásticos Biodegradáveis , Biotecnologia , Poluição Ambiental/prevenção & controle , China , Solo , Temperatura
19.
Sci Rep ; 5: 13826, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26345303

RESUMO

The objectives of this study were to determine the effects of drying and wetting (DW) cycles on soil organic carbon (SOC) mineralisation and on the priming effect (PE) induced by the addition of (13)C-labelled wheat straw to long-term no-tillage (NT) and conventional-tillage (CT) soils. We observed that the SOC mineralisation rate in rewetted soils was greater than that in soils that were kept at constant water content. The proportion of CO2 derived from the straw declined dramatically during the first 10 days. The priming direction was first positive, and then became slightly negative. The PE was higher under DW cycles than under constant water content. There was no significant effect of the tillage system on the SOC mineralisation rate or PE. The data indicate that the DW cycles had a significant effect on the SOC mineralisation rate and on the PE, demonstrating a positive combined effect between wheat straw and moisture fluctuations. Further research is needed to study the role of microbial communities and C pools in affecting the SOC mineralisation response to DW cycles.


Assuntos
Agricultura , Solo/química , Triticum , Tempo (Meteorologia) , Algoritmos , Carbono/análise , Ciclo do Carbono , Dióxido de Carbono/análise , China , Modelos Teóricos , Estações do Ano
20.
BMC Plant Biol ; 15: 170, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26149720

RESUMO

BACKGROUND: It is well known that salinization (high-pH) has been considered as a major environmental threat to agricultural systems. The aim of this study was to investigate the differences between salt stress and alkali stress in metabolic profiles and nutrient accumulation of wheat; these parameters were also evaluated to determine the physiological adaptive mechanisms by which wheat tolerates alkali stress. RESULTS: The harmful effect of alkali stress on the growth and photosynthesis of wheat were stronger than those of salt stress. High-pH of alkali stress induced the most of phosphate and metal ions to precipitate; as a result, the availability of nutrients significantly declined. Under alkali stress, Ca sharply increased in roots, however, it decreased under salt stress. In addition, we detected the 75 metabolites that were different among the treatments according to GC-MS analysis, including organic acids, amino acids, sugars/polyols and others. The metabolic data showed salt stress and alkali stress caused different metabolic shifts; alkali stress has a stronger injurious effect on the distribution and accumulation of metabolites than salt stress. These outcomes correspond to specific detrimental effects of a highly pH environment. CONCLUSIONS: Ca had a significant positive correlation with alkali tolerates, and increasing Ca concentration can immediately trigger SOS Na exclusion system and reduce the Na injury. Salt stress caused metabolic shifts toward gluconeogenesis with increased sugars to avoid osmotic stress; energy in roots and active synthesis in leaves were needed by wheat to develop salt tolerance. Alkali stress (at high pH) significantly inhibited photosynthetic rate; thus, sugar production was reduced, N metabolism was limited, amino acid production was reduced, and glycolysis was inhibited.


Assuntos
Álcalis/farmacologia , Tolerância ao Sal/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Estresse Fisiológico/fisiologia , Triticum/efeitos dos fármacos , Álcalis/metabolismo , Pressão Osmótica/fisiologia , Cloreto de Sódio/metabolismo , Triticum/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...