Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38672890

RESUMO

Zearalenone (ZEA), a mycotoxin widely present in crops and food, poses a major threat to animal and human health. The consumption of ZEA-contaminated food or feed causes intestinal damage. Therefore, exploring how to mitigate the intestinal damage caused by its ZEA is becoming increasingly important. Resveratrol (RSV), a polyphenol compound, mainly exists in Vitis vinifera, Polygonum cuspidatum, Arachis hypogaea, and other plants. It has potent anti-inflammatory and antioxidant activity. The primary objective of this study was to assess the defensive effects of RSV and its molecular mechanism on the intestinal mucosal injury induced by ZEA exposure in mice. The results showed that RSV pretreatment significantly reduced serum DAO and that D-lactate levels altered intestinal morphology and markedly restored TJ protein levels, intestinal goblet cell number, and MUC-2 gene expression after ZEA challenge. In addition, RSV significantly reversed serum pro-inflammatory factor levels and abnormal changes in intestinal MDA, CAT, and T-SOD. Additional research demonstrated that RSV decreased inflammation by blocking the translocation of nuclear factor-kappaB (NF-κB) p65 and decreased oxidative stress by activating the nuclear factor E2-related factor 2 (Nrf2) pathway and its associated antioxidant genes, including NQO1, γ-GCS, and GSH-PX. In summary, RSV supplementation attenuates intestinal oxidative stress, inflammation, and intestinal barrier dysfunction induced by ZEA exposure by mediating the NF-κB and Nrf2/HO-1 pathways.

2.
Front Plant Sci ; 14: 1270396, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929171

RESUMO

Due to global climate change, drought is emerging as a major threat to plant growth and agricultural productivity. Abscisic acid (ABA) has been implicated in plant drought tolerance, however, its retarding effects on plant growth cannot be ignored. The reactions catalyzed by 1-deoxy-D-xylulose-5-phosphate synthase (DXS) and 1-deoxy-D-xylulose-5-phosphate reductoisomerase (DXR) proteins are critical steps within the isoprenoid biosynthesis in plants. Here, five DXS (CtDXS1-5) and two DXR (CtDXR1-2) genes were identified from Cassia tora genome. Based on multiple assays including the phylogeny, cis-acting element, expression pattern, and subcellular localization, CtDXS1 and CtDXR1 genes might be potential candidates controlling the isoprenoid biosynthesis. Intriguingly, CtDXS1 transgenic plants resulted in drought tolerance but retardant growth, while CtDXR1 transgenic plants exhibited both enhanced drought tolerance and increased growth. By comparison of ß-carotene, chlorophyll, abscisic acid (ABA) and gibberellin 3 (GA3) contents in wild-type and transgenic plants, the absolute contents and (or) altered GA3/ABA levels were suggested to be responsible for the balance between drought tolerance and plant growth. The transcriptome of CtDXR1 transgenic plants suggested that the transcript levels of key genes, such as DXS, 9-cis-epoxycarotenoid dioxygenases (NCED), ent-kaurene synthase (KS) and etc, involved with chlorophyll, ß-carotene, ABA and GA3 biosynthesis were induced and their contents increased accordingly. Collectively, the trade-off effect induced by CtDXR1 was associated with redesigning architecture in phytohormone homeostasis and thus was highlighted for future breeding purposes.

3.
Comput Struct Biotechnol J ; 21: 2759-2766, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181661

RESUMO

Macrolides are currently a class of extensively used antibiotics in human and animal medicine. Tylosin is not only one of the most important veterinary macrolides but also an indispensable material for the bio- and chemo-synthesis of new generations of macrolide antibiotics. Thus, improving its production yield is of great value. As the key rate-limiting enzyme catalyzing the terminal step of tylosin biosynthesis in Streptomyces fradiae (S. fradiae), TylF methyltransferase's catalytic activity directly affects tylosin yield. In this study, a tylF mutant library of S. fradiae SF-3 was constructed based on error-prone PCR technology. After two steps of screening in 24-well plates and conical flask fermentation and enzyme activity assay, a mutant strain was identified with higher TylF activity and tylosin yield. The mutation of tyrosine to phenylalanine is localized at the 139th amino acid residue on TylF (TylFY139F), and protein structure simulations demonstrated that this mutation changed the protein structure of TylF. Compared with wild-type protein TylF, TylFY139F exhibited higher enzymatic activity and thermostability. More importantly, the Y139 residue in TylF is a previously unidentified position required for TylF activity and tylosin production in S. fradiae, indicating the further potential to engineer the enzyme. These findings provide helpful information for the directed molecular evolution of this important enzyme and the genetic modification of tylosin-producing bacteria.

4.
J Microbiol Biotechnol ; 33(6): 831-839, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36994618

RESUMO

Tylosin is a potent veterinary macrolide antibiotic produced by the fermentation of Streptomyces fradiae; however, it is necessary to modify S. fradiae strains to improve tylosin production. In this study, we established a high-throughput, 24-well plate screening method for identifying S. fradiae strains that produce increased yields of tylosin. Additionally, we constructed mutant libraries of S. fradiae via ultraviolet (UV) irradiation and/or sodium nitrite mutagenesis. A primary screening of the libraries in 24-well plates and UV spectrophotometry identified S. fradiae mutants producing increased yields of tylosin. Mutants with tylosin yield 10% higher than the wild-type strain were inoculated into shake flasks, and the tylosin concentrations produced were determined by high-performance liquid chromatography (HPLC). Joint (UV irradiation and sodium nitrite) mutagenesis resulted in higher yields of mutants with enhanced tylosin production. Finally, 10 mutants showing higher tylosin yield were re-screened in shake flasks. The yield of tylosin A by strains UN-C183 (6767.64 ± 82.43 µg/ml) and UN-C137 (6889.72 ± 70.25 µg/ml) was significantly higher than that of the wild-type strain (6617.99 ± 22.67 µg/ml). These mutant strains will form the basis for further strain breeding in tylosin production.


Assuntos
Nitrito de Sódio , Tilosina , Mutagênese , Antibacterianos
5.
Infect Immun ; 90(9): e0023922, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35938858

RESUMO

Nitrate metabolism is an adaptation mechanism used by many bacteria for survival in anaerobic environments. As a by-product of inflammation, nitrate is used by the intestinal bacterial pathogens to enable gut infection. However, the responses of bacterial respiratory pathogens to nitrate are less well understood. Actinobacillus pleuropneumoniae is an important bacterial respiratory pathogen of swine. Previous studies have suggested that adaptation of A. pleuropneumoniae to anaerobiosis is important for infection. In this work, A. pleuropneumoniae growth and pathogenesis in response to the nitrate were investigated. Nitrate significantly promoted A. pleuropneumoniae growth under anaerobic conditions in vitro and lethality in mice. By using narQ and narP deletion mutants and single-residue-mutated complementary strains of ΔnarQ, the two-component system NarQ/P was confirmed to be critical for nitrate-induced growth, with Arg50 in NarQ as an essential functional residue. Transcriptome analysis showed that nitrate upregulated multiple energy-generating pathways, including nitrate metabolism, mannose and pentose metabolism, and glycerolipid metabolism via the regulation of NarQ/P. Furthermore, narQ, narP, and its target gene encoding the nitrate reductase Nap contributed to the pathogenicity of A. pleuropneumoniae. The Nap inhibitor tungstate significantly reduced the survival of A. pleuropneumoniae in vivo, suggesting that Nap is a potential drug target. These results give new insights into how the respiratory pathogen A. pleuropneumoniae utilizes the alternative electron acceptor nitrate to overcome the hypoxia microenvironment, which can occur in the inflammatory or necrotic infected tissues.


Assuntos
Infecções por Actinobacillus , Actinobacillus pleuropneumoniae , Actinobacillus pleuropneumoniae/genética , Actinobacillus pleuropneumoniae/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Manose/metabolismo , Camundongos , Nitrato Redutases/genética , Nitrato Redutases/metabolismo , Nitratos/metabolismo , Pentoses/metabolismo , Suínos , Virulência
6.
Chem Commun (Camb) ; 57(93): 12496-12499, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34750599

RESUMO

A novel Cd-based cationic coordination polymer (Cd-CCP) constructed using viologen derivatives, which exhibits an unusual thirteen-fold interpenetrating diamondoid network, has been synthesized. Notably, Cd-CCP displays selective and naked-eye distinguished coloration and ion-controlled photochromism towards halide anions.

7.
Inorg Chem ; 60(8): 5988-5995, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33825478

RESUMO

A novel cationic metal-organic framework composed of {Cu2(COO)4} paddle-wheel units and a tetracarboxylic viologen derivative, namely, {[Cu2(bdcbp)(H2O)2]·2NO3·2H2O}n (Cu-CMOF, H4bdcbpCl2 = 1,1'-bis(3,5-dicarboxyphenyl)-4,4'-bipyridinium dichloride), has been successfully synthesized and structurally characterized. In Cu-CMOF, the {Cu2(COO)4} unit and viologen derivative both act as four-connected nodes forming an ssb-type cationic network with 42.84 topology, in which the positive charges are distributed on the organic viologen moieties. Deeper insight of the structure indicates that the 3D architecture of Cu-CMOF can be seen as packing of a 26-faceted polyhedral cage and two cuboid cages. Notably, Cu-CMOF displays a highly efficient anion exchange ability for capture and removal of anionic pollutants. UV-vis absorption spectra and digital images demonstrate that Cu-CMOF is capable of adsorbing the dichromate anion and anionic dyes effectively, such as methyl orange (MO-), Congo red (CR2-), and New Coccine (NC3-). Meaningfully, anionic dyes (MO-, CR2-, and NC3-) can be efficiently and selectively removed by Cu-CMOF in the presence of cationic dye methylene blue (MLB+). Such behaviors of anionic pollutant adsorption and dye separation are mainly caused by an ion-exchange process facilitated by the large cavity and decentralized distribution of positive charge in Cu-CMOF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...