Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39095056

RESUMO

OBJECTIVE: To evaluate the image quality and diagnostic performance of pulmonary subsolid nodules on conventional iterative algorithms, virtual monoenergetic images (VMIs), and electron density mapping (EDM) using a dual-layer detector spectral CT (DLSCT). METHODS: This retrospective study recruited 270 patients who underwent DLSCT scan for lung nodule screening or follow-up. All CT examinations with subsolid nodules (pure ground-glass nodules [GGNs] or part-solid nodules) were reconstructed with hybrid and model-based iterative reconstruction, VMI at 40, 70, 100, and 130 keV levels, and EDM. The CT number, objective image noise, signal-to-noise ratio, contrast-to-noise ratio, diameter, and volume of subsolid nodules were measured for quantitative analysis. The overall image quality, image noise, visualization of nodules, artifact, and sharpness were subjectively rated by 2 thoracic radiologists on a 5-point scale (1 = unacceptable, 5 = excellent) in consensus. The objective image quality measurements, diameter, and volume were compared among the 7 groups with a repeated 1-way analysis of variance. The subjective scores were compared with Kruskal-Wallis test. RESULTS: A total of 198 subsolid nodules, including 179 pure GGNs, and 19 part-solid nodules were identified. Based on the objective analysis, EDM had the highest signal-to-noise ratio (164.71 ± 133.60; P < 0.001) and contrast-to-noise ratio (227.97 ± 161.96; P < 0.001) among all image sets. Furthermore, EDM had a superior mean subjective rating score (4.80 ± 0.42) for visualization of GGNs compared to other reconstructed images (all P < 0.001), although the model-based iterative reconstruction had superior subjective scores of overall image quality. For pure GGNs, the measured diameter and volume did not significantly differ among different reconstructions (both P > 0.05). CONCLUSIONS: EDM derived from DLSCT enabled improved image quality and lesion conspicuity for the evaluation of lung subsolid nodules compared to conventional iterative reconstruction algorithms and VMIs.

2.
Acta Biomater ; 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004329

RESUMO

Calcium ions (Ca2+) participate in the regulation of cellular apoptosis as a second messenger. Calcium overload, which refers to the abnormal elevation of intracellular Ca2+ concentration, is a factor that can lead to cell death. Here, based on the unique biological effects of Ca2+, hollow mesoporous calcium peroxide nanoparticles (HMCPN) were developed by a facile hydrolysis-precipitation method for drug-free tumor calcicoptosis therapy. The average pore size of the optimized HMCPN17 is 6.4 nm, and the surface area is 81.3 m2/g, which enables HMCPN17 with high drug loading capability. The Ca2+ release from HMCPN17 is much faster at pH 6.8 than that at pH 7.4, which can be ascribed to the acid-triggered conversion of HMCPN17 to Ca2+ and H2O2, indicating a pH-responsive decomposition behavior of HMCPN17. The high drug loading contents of doxorubicin (DOX) and/or sorafenib (SFN) indicate that HMCPN17 can be employed as a generic drug delivery system (DDS). The in vitro and in vivo results reinforce the high calcicoptosis therapeutic efficacy of tumors by our HMCPN17 without drug loading, which can be attributed to the efficient accumulation in tumors and the ability of H2O2 and Ca2+ production at acidic TME. Our HMCPN17 has broad application prospect for construction of multi-drug-loaded composite nanomaterials with diversified functions for the treatment of tumors. STATEMENT OF SIGNIFICANCE: The combination of hollow mesoporous nanomaterials and calcium peroxide nanoparticles has a wide range of applications in the synergistic treatment of tumors. In this study, hollow mesoporous calcium peroxide nanoparticles (HMCPN) were developed based on a simple hydrolysis-precipitation method for tumor calcicoptosis therapy without drug loading. The high drug loading contents of DOX and/or SFN indicate that our HMCPN can serve as a generic DDS. The experimental results demonstrated the high calcicoptosis therapeutic efficacy of HMCPN on tumors even without drug loading.

3.
Biomaterials ; 311: 122701, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38981152

RESUMO

Cuproptosis in antitumor therapy faces challenges from copper homeostasis efflux mechanisms and high glutathione (GSH) levels in tumor cells, hindering copper accumulation and treatment efficacy. Herein, we propose a strategy of "adding fuel to the flames" for potent antitumor therapy through a self-accelerating cycle of ferroptosis-cuproptosis. Disulfiram (DSF) loaded hollow mesoporous copper-iron sulfide (HMCIS) nanoparticle with conjugation of polyethylene glycol (PEG) and folic acid (FA) (i.e., DSF@HMCIS-PEG-FA) was developed to swiftly release DSF, H2S, Cu2+, and Fe2+ in the acidic tumor microenvironment (TME). The hydrogen peroxide (H2O2) levels and acidity within tumor cells enhanced by the released H2S induce acceleration of Fenton (Fe2+) and Fenton-like (Cu2+) reactions, enabling the powerful tumor ferroptosis efficacy. The released DSF acts as a role of "fuel", intensifying catalytic effect ("flame") in tumor cells through the sustainable Fenton chemistry (i.e., "add fuel to the flames"). Robust ferroptosis in tumor cells is characterized by serious mitochondrial damage and GSH depletion, leading to excess intracellular copper that triggers cuproptosis. Cuproptosis disrupts mitochondria, compromises iron-sulfur (Fe-S) proteins, and elevates intracellular oxidative stress by releasing free Fe3+. These interconnected processes form a self-accelerating cycle of ferroptosis-cuproptosis with potent antitumor capabilities, as validated in both cancer cells and tumor-bearing mice.


Assuntos
Antineoplásicos , Cobre , Dissulfiram , Ferroptose , Ferroptose/efeitos dos fármacos , Animais , Dissulfiram/farmacologia , Dissulfiram/química , Humanos , Camundongos , Cobre/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Microambiente Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral , Ferro/metabolismo , Ferro/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/patologia , Ácido Fólico/química , Ácido Fólico/metabolismo , Polietilenoglicóis/química , Camundongos Endogâmicos BALB C , Peróxido de Hidrogênio/metabolismo
4.
J Nanobiotechnology ; 22(1): 234, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724978

RESUMO

Radiotherapy-induced immune activation holds great promise for optimizing cancer treatment efficacy. Here, we describe a clinically used radiosensitizer hafnium oxide (HfO2) that was core coated with a MnO2 shell followed by a glucose oxidase (GOx) doping nanoplatform (HfO2@MnO2@GOx, HMG) to trigger ferroptosis adjuvant effects by glutathione depletion and reactive oxygen species production. This ferroptosis cascade potentiation further sensitized radiotherapy by enhancing DNA damage in 4T1 breast cancer tumor cells. The combination of HMG nanoparticles and radiotherapy effectively activated the damaged DNA and Mn2+-mediated cGAS-STING immune pathway in vitro and in vivo. This process had significant inhibitory effects on cancer progression and initiating an anticancer systemic immune response to prevent distant tumor recurrence and achieve long-lasting tumor suppression of both primary and distant tumors. Furthermore, the as-prepared HMG nanoparticles "turned on" spectral computed tomography (CT)/magnetic resonance dual-modality imaging signals, and demonstrated favorable contrast enhancement capabilities activated by under the GSH tumor microenvironment. This result highlighted the potential of nanoparticles as a theranostic nanoplatform for achieving molecular imaging guided tumor radiotherapy sensitization induced by synergistic immunotherapy.


Assuntos
Ferroptose , Imunoterapia , Compostos de Manganês , Proteínas de Membrana , Camundongos Endogâmicos BALB C , Nanopartículas , Nucleotidiltransferases , Óxidos , Radiossensibilizantes , Animais , Camundongos , Imunoterapia/métodos , Óxidos/química , Óxidos/farmacologia , Feminino , Nucleotidiltransferases/metabolismo , Compostos de Manganês/química , Compostos de Manganês/farmacologia , Linhagem Celular Tumoral , Nanopartículas/química , Radiossensibilizantes/farmacologia , Radiossensibilizantes/química , Proteínas de Membrana/metabolismo , Ferroptose/efeitos dos fármacos , Glucose Oxidase/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Humanos , Dano ao DNA , Microambiente Tumoral/efeitos dos fármacos
5.
J Nanobiotechnology ; 22(1): 162, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594700

RESUMO

To overcome the problems of commercial magnetic resonance imaging (MRI) contrast agents (CAs) (i.e., small molecule Gd chelates), we have proposed a new concept of Gd macrochelates based on the coordination of Gd3+ and macromolecules, e.g., poly(acrylic acid) (PAA). To further decrease the r2/r1 ratio of the reported Gd macrochelates that is an important factor for T1 imaging, in this study, a superior macromolecule hydrolyzed polymaleic anhydride (HPMA) was found to coordinate Gd3+. The synthesis conditions were optimized and the generated Gd-HPMA macrochelate was systematically characterized. The obtained Gd-HPMA29 synthesized in a 100 L of reactor has a r1 value of 16.35 mM-1 s-1 and r2/r1 ratio of 2.05 at 7.0 T, a high Gd yield of 92.7% and a high product weight (1074 g), which demonstrates the feasibility of kilogram scale facile synthesis. After optimization of excipients and sterilization at a high temperature, the obtained Gd-HPMA30 formulation has a pH value of 7.97, osmolality of 691 mOsmol/kg water, density of 1.145 g/mL, and viscosity of 2.2 cP at 20 â„ƒ or 1.8 cP at 37 â„ƒ, which meet all specifications and physicochemical criteria for clinical injections indicating the immense potential for clinical applications.


Assuntos
Meios de Contraste , Anidridos Maleicos , Metacrilatos , Polímeros , Meios de Contraste/química , Imageamento por Ressonância Magnética/métodos
6.
Adv Mater ; 36(28): e2313212, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38670140

RESUMO

Cancer stem cells (CSCs) are one of the determinants of tumor heterogeneity and are characterized by self-renewal, high tumorigenicity, invasiveness, and resistance to various therapies. To overcome the resistance of traditional tumor therapies resulting from CSCs, a strategy of double drug sequential therapy (DDST) for CSC-enriched tumors is proposed in this study and is realized utilizing the developed double-layered hollow mesoporous cuprous oxide nanoparticles (DL-HMCONs). The high drug-loading contents of camptothecin (CPT) and all-trans retinoic acid (ATRA) demonstrate that the DL-HMCON can be used as a generic drug delivery system. ATRA and CPT can be sequentially loaded in and released from CPT3@ATRA3@DL-HMCON@HA. The DDST mechanisms of CPT3@ATRA3@DL-HMCON@HA for CSC-containing tumors are demonstrated as follows: 1) the first release of ATRA from the outer layer induces differentiation from CSCs with high drug resistance to non-CSCs with low drug resistance; 2) the second release of CPT from the inner layer causes apoptosis of non-CSCs; and 3) the third release of Cu+ from DL-HMCON itself triggers the Fenton-like reaction and glutathione depletion, resulting in ferroptosis of non-CSCs. This CPT3@ATRA3@DL-HMCON@HA is verified to possess high DDST efficacy for CSC-enriched tumors with high biosafety.


Assuntos
Camptotecina , Cobre , Células-Tronco Neoplásicas , Humanos , Porosidade , Camptotecina/química , Camptotecina/farmacologia , Animais , Cobre/química , Linhagem Celular Tumoral , Células-Tronco Neoplásicas/efeitos dos fármacos , Tretinoína/química , Tretinoína/farmacologia , Nanopartículas/química , Camundongos , Antineoplásicos/química , Antineoplásicos/farmacologia , Portadores de Fármacos/química , Apoptose/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Liberação Controlada de Fármacos
7.
Acad Radiol ; 31(7): 2962-2972, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38508939

RESUMO

RATIONALE AND OBJECTIVES: To evaluate the diagnostic performance of dual-energy CT (DECT) parameters and quantitative-semantic features for differentiating the invasiveness of lung adenocarcinoma manifesting as ground glass nodules (GGNs). MATERIALS AND METHODS: Between June 2022 and September 2023, 69 patients with 74 surgically resected GGNs who underwent DECT examinations were included. CT numbers on virtual monochromatic images were calculated at 40-130 keV generated from DECT. Quantitative morphological measurements and semantic features were evaluated on unenhanced CT images and compared between pathologically confirmed adenocarcinoma in situ (AIS)-minimally invasive adenocarcinoma (MIA) and invasive lung adenocarcinoma (IAC). Multivariable logistic regression analysis was used to identify independent predictors. The diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC) and compared using DeLong's test. RESULTS: Monochromatic CT numbers at 40-130 keV were significantly higher in IAC than in AIS-MIA (all P < 0.05). Multivariate logistic analysis revealed that CT number of 130 keV (odds ratio [OR] = 1.02, P = 0.013), maximum cross-sectional long diameter (OR =1.40, P = 0.014), deep or moderate lobulation sign (OR =19.88, P = 0.005), and abnormal intranodular vessel morphology (OR = 25.57, P = 0.017) were independent predictors of IAC. The combined prediction model showed a favorable differentiation performance with an AUC of 0.966 (95.2% sensitivity, 94.3% specificity, 94.8% accuracy), which was significantly higher than that for each risk factor (AUC = 0.791-0.822, all P < 0.05). CONCLUSION: A multi-parameter combined prediction model integrating monochromatic CT numbers from DECT and quantitative-semantic features is promising for the preoperative discrimination of IAC and AIS-MIA in GGN-predominant lung adenocarcinoma.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Invasividade Neoplásica , Tomografia Computadorizada por Raios X , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X/métodos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Idoso , Adenocarcinoma de Pulmão/diagnóstico por imagem , Adenocarcinoma de Pulmão/patologia , Diagnóstico Diferencial , Invasividade Neoplásica/diagnóstico por imagem , Estudos Retrospectivos , Adulto , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Idoso de 80 Anos ou mais , Sensibilidade e Especificidade
8.
Small ; 20(29): e2309842, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38431935

RESUMO

Triple negative breast cancer (TNBC) cells have a high demand for oxygen and glucose to fuel their growth and spread, shaping the tumor microenvironment (TME) that can lead to a weakened immune system by hypoxia and increased risk of metastasis. To disrupt this vicious circle and improve cancer therapeutic efficacy, a strategy is proposed with the synergy of ferroptosis, immunosuppression reversal and disulfidptosis. An intelligent nanomedicine GOx-IA@HMON@IO is successfully developed to realize this strategy. The Fe release behaviors indicate the glutathione (GSH)-responsive degradation of HMON. The results of titanium sulfate assay, electron spin resonance (ESR) spectra, 5,5'-Dithiobis-(2-nitrobenzoic acid (DTNB) assay and T1-weighted magnetic resonance imaging (MRI) demonstrate the mechanism of the intelligent iron atom (IA)-based cascade reactions for GOx-IA@HMON@IO, generating robust reactive oxygen species (ROS). The results on cells and mice reinforce the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis triggered by the GOx-IA@HMON@IO with the following steps: 1) GSH peroxidase 4 (GPX4) depletion by disulfidptosis; 2) IA-based cascade reactions; 3) tumor hypoxia reversal; 4) immunosuppression reversal; 5) GPX4 depletion by immunotherapy. Based on the synergistic mechanisms of ferroptosis, immunosuppression reversal and disulfidptosis, the intelligent nanomedicine GOx-IA@HMON@IO can be used for MRI-guided tumor therapy with excellent biocompatibility and safety.


Assuntos
Ferroptose , Imageamento por Ressonância Magnética , Ferroptose/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Animais , Humanos , Linhagem Celular Tumoral , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Terapia de Imunossupressão , Microambiente Tumoral/efeitos dos fármacos , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Feminino , Glutationa/metabolismo
9.
Adv Healthc Mater ; 13(14): e2303626, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38387885

RESUMO

Immunotherapy has emerged as an innovative strategy with the potential to improve outcomes in cancer patients. Recent evidence indicates that radiation-induced DNA damage can activate the cyclic-GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway to enhance the antitumor immune response. Even so, only a small fraction of patients currently benefits from radioimmunotherapy due to the radioresistance and the inadequate activation of the cGAS-STING pathway. Herein, this work integrates hafnium oxide (HfO2) nanoparticles (radiosensitizer) and 7-Ethyl-10-hydroxycamptothecin (SN38, chemotherapy drug, STING agonist) into a polydopamine (PDA)-coated core-shell nanoplatform (HfO2@PDA/Fe/SN38) to achieve synergistic chemoradiotherapy and immunotherapy. The co-delivery of HfO2/SN38 greatly enhances radiotherapy efficacy by effectively activating the cGAS-STING pathway, which then triggers dendritic cells maturation and CD8+ T cells recruitment. Consequently, the growth of both primary and abscopal tumors in tumor-bearing mice is efficiently inhibited. Moreover, the HfO2@PDA/Fe/SN38 complexes exhibit favorable magnetic resonance imaging (MRI)/photoacoustic (PA) bimodal molecular imaging properties. In summary, these developed multifunctional complexes have the potential to intensify immune activation to realize simultaneous cancer Radio/Chemo/Immunotherapy for clinical translation.


Assuntos
Imunoterapia , Proteínas de Membrana , Nanopartículas , Nucleotidiltransferases , Animais , Nucleotidiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Imunoterapia/métodos , Nanopartículas/química , Radiossensibilizantes/química , Radiossensibilizantes/farmacologia , Linhagem Celular Tumoral , Humanos , Camptotecina/farmacologia , Camptotecina/química , Camptotecina/análogos & derivados , Imagem Molecular/métodos , Polímeros/química , Neoplasias/terapia , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Indóis/química , Indóis/farmacologia , Feminino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA