Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Huan Jing Ke Xue ; 45(2): 992-1003, 2024 Feb 08.
Artigo em Chinês | MEDLINE | ID: mdl-38471937

RESUMO

The process of vegetation restoration is often accompanied by significant changes in aboveground plant diversity. To explore the driving mechanism of litter nutrient-soil nutrient-enzyme activity stoichiometry on aboveground vegetation change is of great importance for maintaining regional biodiversity conservation and ecological stability. Taking typical abandoned farmland of different restoration years (1, 8, 16, 31, and 50 a) in the Qinling Mountains as the research object, the variation characteristics of plant community diversity during vegetation restoration were analyzed through field investigation. Litter nutrients, soil nutrients, and the activities of five extracellular enzymes, including ß-1,4-glucosidase (BG), cellobiohydrolase (CBH), ß-1,4-N-acetylglucosaminidase (NAG), leucine aminopeptidase (LAP), and acid phosphatase (AP), were determined. The characteristics of litter nutrients, soil nutrients, and enzyme stoichiometric ratios during vegetation restoration and the driving mechanism of plant diversity changes were discussed. The results showed that the plant community diversity index firstly decreased and then increased with the increase in vegetation restoration years, and the minimum was reached at 16 years after restoration. The results of principal component analysis showed that there were significant differences between total plant community diversity index and litter-soil-enzyme stoichiometric characteristics in different years of vegetation restoration. The plant community diversity index had a strong positive correlation with litter C∶P ratio and litter N∶P ratio but had a negative correlation with soil enzyme C∶P ratio (EEA C∶P). The results of redundancy analysis showed that soil EEA C∶P had the highest explanation rate of plant diversity changes during vegetation restoration (25.93%), followed by soil TP (5.94%), which was the key factor regulating plant diversity changes. In conclusion, plant species and quantity increased significantly in abandoned farmland in the middle part of the Qinling Mountains at the late stage of vegetation restoration. Changes in the soil environment affected microbial metabolic activities and thus changed enzyme activities. Litter-soil-soil extracellular enzymes affected the community environment and plant diversity through feedback and regulation. EEA C∶P and TP were the main driving factors of aboveground plant diversity change during vegetation restoration.


Assuntos
Biodiversidade , Plantas , Solo , Microbiologia do Solo , Nutrientes , Ecossistema , China
2.
Ann Nucl Med ; 38(4): 247-263, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145430

RESUMO

INTRODUCTION: Functions of existing automatic module systems for synthesis of radiopharmaceuticals mainly focus on the radiolabeling of small molecules. There are few modules which have achieved full-automatic radiolabeling of non-metallic and metallic nuclides on small molecules, peptides, and antibody drugs. This study aimed to develop and test a full-automatic multifunctional module system for the safe, stable, and efficient production of radiopharmaceuticals. METHODS: According to characteristics of labeling process of radioactive drugs, using UG and Solidworks softwares, full-automatic cassette-based synthesis module system Mortenon M1 for synthesis of radiopharmaceuticals with various radionuclides, was designed and tested. Mortenon M1 has at least three significant highlights: the cassettes are disposable, and there is no need of manual cleaning; the synthesis method program is flexible and can be edited freely by users according to special needs; this module system is suitable for radiolabeling of both small-molecule and macromolecular drugs, with potentially various radionuclides including 18F, 64Cu, 68Ga, 89Zr, 177Lu, etc. By program control methods for certain drugs, Mortenon M1 was used for radiolabeling of both small-molecule drugs such as [68Ga]-FAPI-46 and macromolecular drugs such as [89Zr]-TROP2 antibody. Quality control assays for product purity were performed with radio-iTLC and radio-HPLC, and the radiotracers were confirmed for application in microPET imaging in xenograft tumor-bearing mouse models. RESULTS: Functional tests for Mortenon M1 module system were conducted, with [68Ga]-FAPI-46 and [89Zr]-TROP2 antibody as goal synthetic products, and it displayed that with the cassette modules, the preset goals could be achieved successfully. The radiolabeling synthesis yield was good ([68Ga]-FAPI-46, 70.63% ± 2.85%, n = 10; [89Zr]-TROP2, 82.31% ± 3.92%, n = 10), and the radiochemical purity via radio-iTLC assay of the radiolabeled products was above 99% after purification. MicroPET imaging results showed that the radiolabeled tracers had reasonable radioactive distribution in MDA-MB-231 and SNU-620 xenograft tumor-bearing mice, and the tumor targeted radiouptake was satisfactory for diagnosis. CONCLUSION: This study demonstrated that the full-automatic module system Mortenon M1 is efficient for radiolabeling synthesis of both small-molecule and macromolecular substrates. It may be helpful to reduce radiation exposure for safety, provide qualified radiolabeled products and reliable PET diagnosis, and ensure stable production and supply of radiopharmaceuticals.


Assuntos
Neoplasias , Compostos Radiofarmacêuticos , Humanos , Animais , Camundongos , Compostos Radiofarmacêuticos/química , Radioisótopos de Gálio/química , Radioisótopos/química , Peptídeos , Anticorpos
3.
Front Plant Sci ; 13: 885984, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665177

RESUMO

Vegetation restoration is assumed to enhance carbon (C) sequestration in terrestrial ecosystems, where plant producers and microbial decomposers play key roles in soil C cycling. However, it is not clear how the nutrient limitation patterns of plants and soil microbes might change during vegetation restoration. We investigated the nutrient limitations of the plant and microbial communities along a natural vegetation restoration chronosequence (1, 8, 16, 31, and 50 years) following farmland abandonment in Qinling Mountains, China, and assessed their relationships with soil factors. The result showed that following natural vegetation restoration, the nitrogen (N) limitation of plant and microbial communities was alleviated significantly, and thereafter, it began to shift to phosphorus (P) limitation at a later stage. Plants showed P limitation 50 years after restoration, while microbial P limitation appeared 31 years later. The changes in plant nutrient limitation were consistent with those in microbial nutrient limitation, but soil microbes were limited by P earlier than plants. Random forest model and partial least squares path modeling revealed that soil nutrient stoichiometry, especially soil C:N ratio, explained more variations in plant and microbial nutrient limitation. Our study demonstrates that the imbalanced soil C:N ratio may determine the soil microbial metabolic limitation and further mediate the variation in plant nutrient limitation during natural vegetation restoration, which provides important insights into the link between metabolic limitation for microbes and nutrient limitation for plants during vegetation restoration to improve our understanding of soil C turnover in temperate forest ecosystems.

4.
Nucl Med Biol ; 39(7): 1034-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22516779

RESUMO

INTRODUCTION: Novel technetium-labeled ligands, (99m)Tc-NCAM and (99m)Tc-NHAM were developed from the N-methyl-d-aspartate (NMDA) receptor agonist memantine as a lead compound by coupling with N(2)S(2). This study evaluated the binding affinity and specificity of the ligands for the NMDA receptor. METHODS: Ligand biodistribution and uptake specificity in the brain were investigated in mice. Binding affinity and specificity were determined by radioligand receptor binding assay. Three antagonists were used for competitive binding analysis. In addition, uptake of the complexes into SH-SY5Y nerve cells was evaluated. RESULTS: The radiochemical purity of (99m)Tc-labeled ligands was more than 95%. Analysis of brain regional uptake showed higher concentration in the frontal lobe and specific uptake in the hippocampus. (99m)Tc-NCAM reached a higher target to nontarget ratio than (99m)Tc-NHAM. The results indicated that (99m)Tc-NCAM bound to a single site on the NMDA receptor with a K(d) of 701.21 nmol/l and a B(max) of 62.47 nmol/mg. Specific inhibitors of the NMDA receptor, ketamine and dizocilpine, but not the dopamine D(2) and 5HT(1A) receptor partial agonist aripiprazole, inhibited specific binding of (99m)Tc-NCAM to the NMDA receptor. Cell physiology experiments showed that NCAM can increase the viability of SH-SY5Y cells after glutamate-induced injury. CONCLUSIONS: The new radioligand (99m)Tc-NCAM has good affinity for and specific binding to the NMDA receptor, and easily crosses the blood-brain barrier; suggesting that it might be a potentially useful tracer for NMDA receptor expression.


Assuntos
Memantina/química , Imagem Molecular/métodos , Compostos de Organotecnécio/química , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Transporte Biológico , Encéfalo/metabolismo , Linhagem Celular Tumoral , Desenho de Fármacos , Humanos , Cinética , Camundongos , Compostos de Organotecnécio/metabolismo , Radioquímica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...