Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-35139025

RESUMO

With the development of biomedical techniques in the past decades, causal gene identification has become one of the most promising applications in human genome-based business, which can help doctors to evaluate the risk of certain genetic diseases and provide further treatment recommendations for potential patients. When no controlled experiments can be applied, machine learning techniques like causal inference-based methods are generally used to identify causal genes. Unfortunately, most of the existing methods detect disease-related genes by ranking-based strategies or feature selection techniques, which generally return a superset of the corresponding real causal genes. There are also some causal inference-based methods that can identify a part of real causal genes from those supersets, but they are just able to return a few causal genes. This is contrary to our knowledge, as many results from controlled experiments have demonstrated that a certain disease, especially cancer, is usually related to dozens or hundreds of genes. In this work, we present an effective approach for identifying causal genes from gene expression data by using a new search strategy based on non-linear regression-based independence tests, which is able to greatly reduce the search space, and simultaneously establish the causal relationships from the candidate genes to the disease variable. Extensive experiments on real-world cancer datasets show that our method is superior to the existing causal inference-based methods in three aspects: 1) our method can identify dozens of causal genes, and 1/3  âˆ¼ 1/2 of the discovered causal genes can be verified by existing works that they are really directly related to the corresponding disease; 2) The discovered causal genes are able to distinguish the status or disease subtype of the target patient; 3) Most of the discovered causal genes are closely relevant to the disease variable.


Assuntos
Algoritmos , Neoplasias , Humanos , Aprendizado de Máquina , Neoplasias/genética , Neoplasias/metabolismo
2.
IEEE Trans Cybern ; 52(5): 3232-3243, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-32780709

RESUMO

This article addresses two important issues of causal inference in the high-dimensional situation. One is how to reduce redundant conditional independence (CI) tests, which heavily impact the efficiency and accuracy of existing constraint-based methods. Another is how to construct the true causal graph from a set of Markov equivalence classes returned by these methods. For the first issue, we design a recursive decomposition approach where the original data (a set of variables) are first decomposed into two small subsets, each of which is then recursively decomposed into two smaller subsets until none of these subsets can be decomposed further. Redundant CI tests can be reduced by inferring causalities from these subsets. The advantage of this decomposition scheme lies in two aspects: 1) it requires only low-order CI tests and 2) it does not violate d -separation. The complete causality can be reconstructed by merging all the partial results of the subsets. For the second issue, we employ regression-based CI tests to check CIs in linear non-Gaussian additive noise cases, which can identify more causal directions by [Formula: see text] (or [Formula: see text]). Consequently, causal direction learning is no longer limited by the number of returned V -structures and consistent propagation. Extensive experiments show that the proposed method can not only substantially reduce redundant CI tests but also effectively distinguish the equivalence classes.


Assuntos
Causalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...