Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 261: 116468, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38852326

RESUMO

Rational design of peroxidase (POD)-like nanozymes with high activity and specificity still faces a great challenge. Besides, the investigations of nanozymes inhibitors commonly focus on inhibition efficiency, the interaction between nanozymes-involved catalytic reactions and inhibitors is rarely reported. In this work, we design a p-block metal Sn-doped Pt (p-d/PtSn) nanozymes with the selective enhancement of POD-like activity. The p-d orbital hybridization interaction between Pt and Sn can effectively optimize the electronic structure of PtSn nanozymes and thus selectively enhance POD-like activity. In addition, the antioxidants as nanozymes inhibitors can effectively inhibit the POD-like activity of p-d/PtSn nanozymes, which results in the fact that antioxidants absorbed on the p-d/PtSn surface can hinder the adsorption of hydrogen peroxide. The inhibition type (glutathione as a model molecule) is reversible mixed-inhibition with inhibition constants (Ki' and Ki) of 0.21 mM and 0.03 mM. Finally, based on the varying inhibition levels of antioxidant molecules, a colorimetric sensor array is constructed to distinguish and simultaneously detect five antioxidants. This work is expected to design highly active and specific nanozymes through p-d orbital hybrid engineering, and also provides insights into the interaction between nanozymes and inhibitors.


Assuntos
Antioxidantes , Técnicas Biossensoriais , Colorimetria , Platina , Colorimetria/métodos , Antioxidantes/química , Antioxidantes/farmacologia , Antioxidantes/análise , Técnicas Biossensoriais/métodos , Platina/química , Peroxidase/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Nanoestruturas/química , Catálise
2.
Anal Chem ; 96(24): 10021-10027, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38843243

RESUMO

Although oxygen reduction reaction (ORR) as an effective signal amplification strategy has been extensively investigated for the improvement of sensitivity of electrochemical sensors, their activity and stability are still a great challenge. Herein, single-atom Fe (FeSA) and Fe nanoparticles (FeNP) on nitrogen-doped carbon (FeSA/FeNP) catalysts demonstrate a highly active and stable ORR performance, thus achieving the sensitive and stable electrochemical sensing of organophosphorus pesticides (OPs). Experimental investigations indicate that FeNP in FeSA/FeNP can improve the ORR activity by adjusting the electronic structure of FeSA active sites. Besides, owing to the excellent catalase-like activity, FeSA/FeNP can rapidly consume in situ generated H2O2 in the ORR process and avoid the leakage of active sites, thereby improving the stability of ORR. Utilizing the excellent ORR performance of FeSA/FeNP, an electrochemical sensor for OPs is established based on the thiocholine-induced poison of the active sites, demonstrating satisfactory sensitivity and stability. This work provides new insight into the design of high performance ORR catalysts for sensitive and stable electrochemical sensing.

3.
Angew Chem Int Ed Engl ; 63(28): e202406511, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38712899

RESUMO

Alkali metals (e.g. Li, Na, and K) and multivalent metals (e.g. Zn, Mg, Ca, and Al) have become star anodes for developing high-energy-density rechargeable batteries due to their high theoretical capacity and excellent conductivity. However, the inevitable dendrites and unstable interfaces of metal anodes pose challenges to the safety and stability of batteries. To address these issues, covalent organic frameworks (COFs), as emerging materials, have been widely investigated due to their regular porous structure, flexible molecular design, and high specific surface area. In this minireview, we summarize the research progress of COFs in stabilizing metal anodes. First, we present the research origins of metal anodes and delve into their advantages and challenges as anodes based on the physical/chemical properties of alkali and multivalent metals. Then, special attention has been paid to the application of COFs in the host design of metal anodes, artificial solid electrolyte interfaces, electrolyte additives, solid-state electrolytes, and separator modifications. Finally, a new perspective is provided for the research of metal anodes from the molecular design, pore modulation, and synthesis of COFs.

4.
Anal Chem ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38324915

RESUMO

Nanozymes with peroxidase (POD)-like activity have garnered significant attention due to their exceptional performance in colorimetric assays. However, nanozymes often possess oxidase (OD) and POD-like activity simultaneously, which affects the accuracy and sensitivity of the detection results. To address this issue, inspired by the catalytic pocket of natural POD, a single-atom nanozyme with FeN5 configuration is designed, exhibiting enhanced POD-like activity in comparison with a single-atom nanozyme with FeN4 configuration. The axial N atom in FeN5 highly mimics the amino acid residues in natural POD to optimize the electronic structure of the metal active center Fe, realizing the efficient activation of H2O2. In addition, in the presence of both H2O2 and O2, FeN5 enhances the activation of H2O2, effectively avoiding the interference of dissolved oxygen in colorimetric sensing. As a proof-of-concept application, a colorimetric detection platform for uranyl ions (UO22+) in seawater is successfully constructed, demonstrating satisfactory sensitivity and specificity.

5.
Nano Lett ; 24(9): 2912-2920, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38391386

RESUMO

Nanozymes with peroxidase-like activity have been extensively studied for colorimetric biosensing. However, their catalytic activity and specificity still lag far behind those of natural enzymes, which significantly affects the accuracy and sensitivity of colorimetric biosensing. To address this issue, we design PdSn nanozymes with selectively enhanced peroxidase-like activity, which improves the sensitivity and accuracy of a colorimetric immunoassay. The peroxidase-like activity of PdSn nanozymes is significantly higher than that of Pd nanozymes. Theoretical calculations reveal that the p-d orbital hybridization of Pd and Sn not only results in an upward shift of the d-band center to enhance hydrogen peroxide (H2O2) adsorption but also regulates the O-O bonding strength of H2O2 to achieve selective H2O2 activation. Ultimately, the nanozyme-linked immunosorbent assay has been successfully developed to sensitively and accurately detect the prostate-specific antigen (PSA), achieving a low detection limit of 1.696 pg mL-1. This work demonstrates a promising approach for detecting PSA in a clinical diagnosis.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Masculino , Humanos , Antígeno Prostático Específico , Imunoensaio/métodos , Antioxidantes , Peroxidases , Colorimetria/métodos , Técnicas Biossensoriais/métodos
6.
Small ; 20(11): e2311314, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212283

RESUMO

Highly anticipated potassium metal batteries possess abundant potassium reserves and high theoretical capacity but currently suffer from poor cycling stability as a result of dendritic growth and volume expansion. Here, carbon cloths modified with different functional groups treated with ethylene glycol, ethanolamine, and ethylenediamine are designed as 3D hosts, exhibiting different wettability to molten potassium. Among them, the hydroxyl-decorated carbon cloth with a high affinity for potassium can achieve molten potassium perfusion (K@EG-CC) within 3 s. By efficiently inducing the uniform deposition of metal potassium, buffing its volume expansion, and lowering local current density, the developed K@EG-CC anode alleviates the dendrite growth issue. The K@EG-CC||K@EG-CC symmetric battery can be cycled stably for 2100 h and has only a small voltage hysteresis of ≈93 mV at 0.5 mA cm-2 . Moreover, the high-voltage plateau, high energy density, and long cycle life of K metal full batteries can be realized with a low-cost KFeSO4 F@carbon nanotube cathode. This study provides a simple strategy to promote the commercial applications of potassium metal batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...