Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(7): e2306132, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37800612

RESUMO

Epitaxy growth and mechanical transfer of high-quality III-nitrides using 2D materials, weakly bonded by van der Waals force, becomes an important technology for semiconductor industry. In this work, wafer-scale transferrable GaN epilayer with low dislocation density is successfully achieved through AlN/h-BN composite buffer layer and its application in flexible InGaN-based light-emitting diodes (LEDs) is demonstrated. Guided by first-principles calculations, the nucleation and bonding mechanism of GaN and AlN on h-BN is presented, and it is confirmed that the adsorption energy of Al atoms on O2 -plasma-treated h-BN is over 1 eV larger than that of Ga atoms. It is found that the introduced high-temperature AlN buffer layer induces sufficient tensile strain during rapid coalescence to compensate the compressive strain generated by the heteromismatch, and a strain-relaxation model for III-nitrides on h-BN is proposed. Eventually, the mechanical exfoliation of single-crystalline GaN film and LED through weak interaction between multilayer h-BN is realized. The flexible free-standing thin-film LED exhibits ≈66% luminescence enhancement with good reliability compared to that before transfer. This work proposes a new approach for the development of flexible semiconductor devices.

2.
ACS Appl Mater Interfaces ; 15(19): 23501-23511, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37134325

RESUMO

The heteroepitaxy of high-quality aluminum nitride (AlN) with low stress is essential for the development of energy-efficient deep ultraviolet light-emitting diodes (DUV-LEDs). In this work, we realize that quasi-van der Waals epitaxy growth of a stress-released AlN film with low dislocation density on hexagonal boron nitride (h-BN)/sapphire suffered from high-temperature annealing (HTA) treatment and demonstrate its application in a DUV-LED. It is revealed that HTA effectively improves the crystalline quality and surface morphology of monolayer h-BN. Guided by first-principles calculations, we demonstrate that h-BN can enhance lateral migration of Al atoms due to the ability to lower the surface migration barrier (less than 0.14 eV), resulting in the rapid coalescence of the AlN film. The HTA h-BN is also proved to be efficient in reducing the dislocation density and releasing the large strain in the AlN epilayer. Based on the low-stress and high-quality AlN film on HTA h-BN, the as-fabricated 290 nm DUV-LED exhibits 80% luminescence enhancement compared to that without h-BN, as well as good reliability with a negligible wavelength shift under high current. These findings broaden the applications of h-BN in favor of III-nitride and provide an opportunity for further developing DUV optoelectronic devices on large mismatched heterogeneous substrates.

3.
Opt Express ; 30(12): 21349-21361, 2022 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-36224856

RESUMO

Versatile applications have driven a desire for dual-band detection that enables seeing objects in multiple wavebands through a single photodetector. In this paper, a concept of using graphene/p-GaN Schottky heterojunction on top of a regular AlGaN-based p-i-n mesa photodiode is reported for achieving solar-/visible-blind dual-band (275 nm and 365 nm) ultraviolet photodetector with high performance. The highly transparent graphene in the front side and the polished sapphire substrate at the back side allows both top illumination and back illumination for the dual band detection. A system limit dark current of 1×10-9 A/cm2 at a negative bias voltage up to -10 V has been achieved, while the maximum detectivity obtained from the detection wavebands of interests at 275 nm and 365 nm are ∼ 9.0 ×1012 cm·Hz1/2/W at -7.5 V and ∼8.0 × 1011 cm·Hz1/2/W at +10 V, respectively. Interestingly, this new type of photodetector is dual-functional, capable of working as either photodiode or photoconductor, when switched by simply adjusting the regimes of bias voltage applied on the devices. By selecting proper bias, the device operation mode would switch between a high-speed photodiode and a high-gain photoconductor. The device exhibits a minimum rise time of ∼210 µs when working as a photodiode and a maximum responsivity of 300 A/W at 6 µW/cm2 when working as a photoconductor. This dual band and multi-functional design would greatly extend the utility of detectors based on nitrides.

4.
Opt Lett ; 47(17): 4295-4298, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048637

RESUMO

Raman lasing can be a promising way to generate highly coherent chip-based lasers, especially in high-quality (high-Q) crystalline microcavities. Here, we measure the fundamental linewidth of a stimulated Raman laser in an aluminum nitride (AlN)-on-sapphire microcavity with a record Q-factor up to 3.7 million. An inverse relationship between fundamental linewidth and emission power is observed. A limit of the fundamental linewidth, independent of Q-factor, due to Raman-pump-induced Kerr parametric oscillation is derived.

5.
Small ; 18(41): e2202529, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35986697

RESUMO

Use of 2D materials as buffer layers has prospects in nitride epitaxy on symmetry mismatched substrates. However, the control of lattice arrangement via 2D materials at the heterointerface presents certain challenges. In this study, the epitaxy of single-crystalline GaN film on WS2 -glass wafer is successfully performed by using the strong polarity of WS2 buffer layer and its perfectly matching lattice geometry with GaN. Furthermore, this study reveals that the first interfacial nitrogen layer plays a crucial role in the well-constructed interface by sharing electrons with both Ga and S atoms, enabling the single-crystalline stress-free GaN, as well as a violet light-emitting diode. This study paves a way for the heterogeneous integration of semiconductors and creates opportunities to break through the design and performance limitations, which are induced by substrate restriction, of the devices.

7.
ACS Appl Mater Interfaces ; 14(18): 21232-21241, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35486957

RESUMO

The high-quality semipolar (112̅2) AlGaN epitaxial films have been obtained on m-plane sapphire by metal-organic chemical vapor deposition. X-ray rocking curve measurements show the full-width at half-maximums of semipolar (112̅2)-oriented AlGaN films are 0.357° and 0.531° along [112̅3̅]AlGaN and [11̅00]AlGaN, respectively. The fabricated semipolar AlGaN metal-semiconductor-metal solar-blind ultraviolet (UV) photodetector (PD) exhibits a high responsivity of 1842 A/W. The fast response and reliability of the UV PD are ensured via fast switching with a rise and decay time of 90 ms and 53(720) ms, respectively. The UV PD exhibits a significant reduction in the dark current, that is, from 100 µA to 780 fA at 10 V, using a simple wet chemical etching to modify the surface properties of materials. The photo-to-dark-current ratio value of the etched UV PD reaches 4 orders of magnitude higher than the unetched UV PD under 270 nm illumination. These are attributed to the fact that KOH wet etching assists in eliminating the surface states and reconstructing the surface oxides. This work might provide a new potential for the development of solar-blind UV PDs with high performance.

8.
Light Sci Appl ; 11(1): 88, 2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393405

RESUMO

The energy-efficient deep ultraviolet (DUV) optoelectronic devices suffer from critical issues associated with the poor quality and large strain of nitride material system caused by the inherent mismatch of heteroepitaxy. In this work, we have prepared the strain-free AlN film with low dislocation density (DD) by graphene (Gr)-driving strain-pre-store engineering and a unique mechanism of strain-relaxation in quasi-van der Waals (QvdW) epitaxy is presented. The DD in AlN epilayer with Gr exhibits an anomalous sawtooth-like evolution during the whole epitaxy process. Gr can help to enable the annihilation of the dislocations originated from the interface between AlN and Gr/sapphire by impelling a lateral two-dimensional growth mode. Remarkably, it can induce AlN epilayer to pre-store sufficient tensile strain during the early growth stage and thus compensate the compressive strain caused by hetero-mismatch. Therefore, the low-strain state of the DUV light-emitting diode (DUV-LED) epitaxial structure is realized on the strain-free AlN template with Gr. Furthermore, the DUV-LED with Gr demonstrate 2.1 times enhancement of light output power and a better stability of luminous wavelength compared to that on bare sapphire. An in-depth understanding of this work reveals diverse beneficial impacts of Gr on nitride growth and provides a novel strategy of relaxing the vital requirements of hetero-mismatch in conventional heteroepitaxy.

9.
Small ; 18(16): e2200057, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35142049

RESUMO

The performance of nitride devices is strongly affected by their polarity. Understanding the polarity determination and evolution mechanism of polar wurtzite nitrides on nonpolar substrates is therefore critically important. This work confirms that the polarity of AlN on sapphire prepared by metal-organic chemical vapor deposition is not inherited from the nitrides/sapphire interface as widely accepted, instead, experiences a spontaneous polarity inversion during the growth. It is found that at the initial growth stage, the interface favors the nitrogen-polarity, rather than the widely accepted metal-polarity or randomly coexisting. However, the polarity subsequently converts into the metal-polar situation, at first locally then expanding into the whole area, driven by the anisotropy of surface energies, which results in universally existing inherent inverse grain boundaries. Furthermore, vertical two-dimensional electron accumulation originating from the lattice symmetry breaking at the inverse grain boundary is first revealed. This work identifies another cause of high-density defects in nitride epilayers, besides lattice mismatch induced dislocations. These findings also offer new insights into atomic structure and determination mechanism of polarity in nitrides, providing clues for its manipulation toward the novel hetero-polarity devices.

10.
Opt Lett ; 47(3): 637-640, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-35103692

RESUMO

Self-powered ultraviolet detectors may find application in aviation and military fields. Here we demonstrate a self-powered asymmetric metal-semiconductor-metal (MSM) deep ultraviolet (DUV) detector with an Ni/Al electrode contact to AlN, and a photoelectric response current increase from dark current (Id) 2.6 × 10-12 A to 1.0 × 10-10 A after UV illumination (Ip) at 0 V bias. To further improve device performance, trenches are etched in AlN, and the Ni/Al electrodes are deposited in trenches to form a three-dimensional MSM (3D-MSM) structure. The improved performance is attributed to the stronger electric field from the asymmetric electrode and a shorter carrier migration path from the 3D-MSM device configuration. Our work will promote the development and application of DUV self-powered devices.

11.
Opt Lett ; 46(21): 5312-5315, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724463

RESUMO

We study the self-frequency shift of continuously pumped Kerr solitons in AlN-on-sapphire microcavities with Raman gain bandwidths narrower than the cavity free-spectral range. Solitons are generated in ∼230GHz microcavities via high-order mode dispersion engineering. The dependence of the self-frequency shift on soliton pulse width is measured and differs from amorphous material microcavities. Our measurement and simulation reveal the impact of frequency detuning between the cavity resonances and Raman gain peaks, as well as the importance of all three Raman gain peaks. The interplay between the Raman effect and dispersive wave recoil and a potential quiet point are also observed.

12.
Sci Adv ; 7(31)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34330700

RESUMO

Van der Waals epitaxy provides a fertile playground for the monolithic integration of various materials for advanced electronics and optoelectronics. Here, a previously unidentified nanorod-assisted van der Waals epitaxy is developed and nearly single-crystalline GaN films are first grown on amorphous silica glass substrates using a graphene interfacial layer. The epitaxial GaN-based light-emitting diode structures, with a record internal quantum efficiency, can be readily lifted off, becoming large-size flexible devices. Without the effects of the potential field from a single-crystalline substrate, we expect this approach to be equally applicable for high-quality growth of nitrides on arbitrary substrates. Our work provides a revolutionary technology for the growth of high-quality semiconductors, thus enabling the hetero-integration of highly mismatched material systems.

13.
Appl Opt ; 60(8): 2222-2227, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33690318

RESUMO

Recently, optical metasurfaces have attracted much attention due to their versatile features in manipulating phase, polarization, and amplitude of both reflected and transmitted light. Because it controls over four degrees of freedom: phase, polarization, amplitude, and wavelength of light wavefronts, optical cryptography is a promising technology in information security. So far, information encoding can be implemented by the metasurface in one-dimensional (1D) mode (either wavelength or polarization) and in a two-dimensional (2D) mode of both wavelength and polarization. Here, we demonstrate multiplexing multifoci optical metasurfaces for information encoding in the ultraviolet spectrum both in the 1D and 2D modes in the spatial zone, composed of high-aspect-ratio aluminum nitride nanorods, which introduce discontinuous phases through the Pancharatnam-Berry phase to realize multifoci in the spatial zone. Since the multiplexed multifocal optical metasurfaces are sensitive to the helicity of the incident light and the wavelength is within the ultraviolet spectrum, the security of the information encrypted by it would be guaranteed.

14.
Small ; 17(19): e2100098, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33788402

RESUMO

The nitride films with high indium (In) composition play a crucial role in the fabrication of In-rich InGaN-based optoelectronic devices. However, a major limitation is In incorporation requiring a low temperature during growth at the expense of nitride dissociation. Here, to overcome this limitation, a strain-modulated growth method, namely the graphene (Gr)-nanorod (NR) enhanced quasi-van der Waals epitaxy, is proposed to increase the In composition in InGaN alloy. The lattice transparency of Gr enables constraint of in-plane orientation of nitride film and epitaxial relationships at the heterointerface. The Gr interlayer together with NRs buffer layer substantially reduces the stress of the GaN film by 74.4%, from 0.9 to 0.23 GPa, and thus increases the In incorporation by 30.7%. The first principles calculations confirm that the release of strain accounts for the dramatic improvement. The photoluminescence peak of multiple quantum wells shifts from 461 to 497 nm and the functionally small-sized cyan light-emitting diodes of 7 × 9 mil2 are demonstrated. These findings provide an efficient approach for the growth of In-rich InGaN film and extend the applications of nitrides in advanced optoelectronic, photovoltaic, and thermoelectric devices.

15.
Opt Lett ; 45(16): 4499-4502, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32796993

RESUMO

We demonstrate ultrabroadband supercontinuum generation from ultraviolet to mid-infrared wavelengths in single-crystalline aluminum nitride waveguides. Tunable dispersive waves are observed at the mid-infrared regime by precisely controlling the waveguide widths. In addition, ultraviolet light is generated through cascaded second-harmonic generation in the modal phase-matched waveguides. Numerical simulation indicates a high degree of coherence of the generated spectrum at around the telecom pump and two dispersive waves. Our results establish a reliable path for multiple octave supercontinuum comb generation in single-crystalline aluminum nitride to enable applications including precision frequency metrology and spectroscopy.

16.
Adv Sci (Weinh) ; 7(15): 2001272, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32775172

RESUMO

Efficient and low-cost production of high-quality aluminum nitride (AlN) films during heteroepitaxy is the key for the development of deep ultraviolet light-emitting diodes (DUV-LEDs). Here, the quasi-2D growth of high-quality AlN film with low strain and low dislocation density on graphene (Gr) is presented and a high-performance 272 nm DUV-LED is demonstrated. Guided by first-principles calculations, it is found that AlN grown on Gr prefers lateral growth both energetically and kinetically, thereby resulting in a Gr-driven quasi-2D growth mode. The strong lateral growth mode enables most of dislocations to annihilate each other at the AlN/Gr interface, and therefore the AlN epilayer can quickly coalesce and flatten the nanopatterned sapphire substrate. Based on the high quality and low strain of AlN film grown on Gr, the as-fabricated 272 nm DUV-LED shows a 22% enhancement of output power than that with low-temperature AlN buffer, following a negligible wavelength shift under high current. This facile strategy opens a pathway to drastically improve the performance of DUV-LEDs.

17.
J Vis Exp ; (160)2020 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-32658181

RESUMO

This protocol demonstrates a method for graphene-assisted quick growth and coalescence of AlN on nano-pattened sapphire substrate (NPSS). Graphene layers are directly grown on NPSS using catalyst-free atmospheric-pressure chemical vapor deposition (APCVD). By applying nitrogen reactive ion etching (RIE) plasma treatment, defects are introduced into the graphene film to enhance chemical reactivity. During metal-organic chemical vapor deposition (MOCVD) growth of AlN, this N-plasma treated graphene buffer enables AlN quick growth, and coalescence on NPSS is confirmed by cross-sectional scanning electron microscopy (SEM). The high quality of AlN on graphene-NPSS is then evaluated by X-ray rocking curves (XRCs) with narrow (0002) and (10-12) full width at half-maximum (FWHM) as 267.2 arcsec and 503.4 arcsec, respectively. Compared to bare NPSS, AlN growth on graphene-NPSS shows significant reduction of residual stress from 0.87 GPa to 0.25 Gpa, based on Raman measurements. Followed by AlGaN multiple quantum wells (MQWS) growth on graphene-NPSS, AlGaN-based deep ultraviolet light-emitting-diodes (DUV LEDs) are fabricated. The fabricated DUV-LEDs also demonstrate obvious, enhanced luminescence performance. This work provides a new solution for the growth of high quality AlN and fabrication of high performance DUV-LEDs using a shorter process and less costs.


Assuntos
Óxido de Alumínio/química , Grafite/química , Nanoestruturas/química , Semicondutores , Raios Ultravioleta , Compostos de Alumínio/química , Catálise , Gálio/química , Gases/química , Luminescência , Volatilização
18.
Opt Lett ; 45(13): 3466-3469, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32630873

RESUMO

All-dielectric metasurfaces offer a promising way to control amplitude, polarization, and phase of light. However, ultraviolet (UV) component metasurfaces are rarely reported due to significant absorption loss for most dielectric materials and the required smaller footprint or feature size. Here, we demonstrate broadband UV focusing and routing in both transmission and reflection modes in simulations by adopting aluminum nitride (AlN) with ultrawide bandgap and a waveplate metasurface structure. As for experiments, the on-axis, off-axis focusing characteristics in transmission mode have been investigated at representative UVA (375 nm) wavelength for the first time, to the best of our knowledge. Furthermore, we fabricated a UV transmission router for monowavelength, guiding UV light to the designated different spatial positions of the same or different focal planes. Our work is meaningful for the development of UV photonics components and devices and would facilitate the integration and miniaturization of UV nanophotonics.

19.
Opt Lett ; 45(12): 3325-3328, 2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32538974

RESUMO

Conventional metal-semiconductor-metal (MSM) ultraviolet (UV) detectors have the disadvantage of limited adjustable structural parameters, finite electrical field, and long carrier path. In this Letter, we demonstrate a three-dimensional (3D) MSM structural AlN-based deep-UV (DUV) detector, fabricated through simple trench etching and metal deposition, while flip bonding to the silicon substrate forms a flip-chip 3D-MSM (FC-3DMSM) device. 3D-MSM devices exhibit improved responsiveness and response speed, compared with conventional MSM devices. Time-dependent photoresponse of all devices is also investigated here. The enhanced performance of the 3D-MSM device is to be attributed to the intensified electrical field from the 3D metal electrode configuration and the inhibition of the carrier vertical transport, which unambiguously increases the carrier collection efficiency and migration speed, and thus the responsivity and speed as well. This work should advance the design and fabrication of AlN-based DUV detectors.

20.
Appl Opt ; 59(14): 4398-4403, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400418

RESUMO

The metasurface promises an unprecedented way for manipulating wavefronts and has strengths in large information capacity for the hologram. However, strong absorption loss for most dielectric materials hinders the realization of such a metasurface operating in the ultraviolet (UV) spectrum. Herein, aluminum nitride (AlN) with an ultrawide bandgap has been utilized as the material of the UV metasurface for multi-plane holography, increasing the information capacity and security level of information storage simultaneously. The metasurface for multi-plane holography achieving a correlation coefficient of over 0.8 with three reconstructed images has been investigated, and also the single-plane holography at an efficiency of 34.05%. Our work might provide potential application in UV nanophotonics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...