Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1016573

RESUMO

@#After years of development, the advantages of computer-assisted orthognathic surgery have been widely recognized. However, the clinical application of this technology is challenging. Each step may generate errors from data acquisition, computer-assisted diagnosis, and computer-assisted surgical design, causing errors to be transferred from the virtual surgical plan to the operation. The accumulation and amplification of errors will affect the final surgical effect. Currently, digital devices, such as intraoral scanners, are being explored for error control, utilizing automation methods and algorithms, and implementing personalized bone positioning methods. Moreover, there are still many problems that have not been fully resolved, such as precise simulation of postoperative soft tissue, functional assessment of mandibular movement, and absorbable internal fixation materials. Fully understanding computer-assisted orthognathic surgery's limitations could provide direction for optimizing existing methods while helping clinicians avoid risks and maximize its advantages to achieve the best outcome. Many emerging and cutting-edge technologies, such as personalized titanium plates, artificial intelligence, and surgical robots, will further promote the development of this discipline. We can expect future optimization of digital orthognathic surgical technology by innovations in automation, intelligence, and personalization.

2.
J Mater Chem B ; 11(17): 3816-3822, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-37092687

RESUMO

Degradable bioceramics such as hydroxyapatite (HA) are usually used as bone grafts due to their excellent osteoconductive ability. Recent studies have proved that decorated micro/nano-structures on HA could enhance its osteogenic capacity by directly activating osteogenic differentiation of bone marrow-derived stem cells (BMSCs) or by indirectly activating the osteoimmune microenvironment. However, it is still unclear whether the degradation process of HA affects the activation effect of micro/nano-structures. In this study, we first demonstrate that the enhanced osteogenic properties activated by micro/nano-structures could be memorized and continue to play a role even after the removal of micro/nano-structures. More interestingly, this topography-triggered osteogenic memory effect (TTOME) could be regulated through the stimulation time, indicating the importance of the rational maintenance of micro/nano-structures as well as the degradation process of bioceramics. These findings provide a perspective of the design of bone implants with a biodegradable surface topography.


Assuntos
Regeneração Óssea , Osteogênese , Diferenciação Celular , Durapatita/farmacologia , Durapatita/química , Osso e Ossos
3.
J Phys Condens Matter ; 34(4)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34474403

RESUMO

Superconducting nanofibers have attracted much attention in basic researches and practical applications due to their unique physical properties such as broad phase transition temperature, excellent heat conductivity, and high critical current density, etc. Electrospinning, as a common method to prepare nanofibers, also has many applications for the preparation of superconducting nanofibers. However, a few of the new methods to fabricate superconducting nanofibers via electrospinning still need further investigations. This review firstly introduces several potential electrospinning methods to obtain superconducting nanofibers, then proceeds to summarize the recent progress in the field of electrospun superconducting materials. The preparation process, difficulties and problems, physical properties of the superconducting nanofibers or nanonetworks (such as superconducting transition temperature, critical current density, critical magnetic field strength, fiber morphology, and structure, etc), theoretical analysis of the properties, and the techniques to improve the performance are also reviewed. In addition, some suggestions and prospects for the development and applications of electrospun superconducting materials in the future are discussed.

4.
Mater Sci Eng C Mater Biol Appl ; 110: 110708, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32204020

RESUMO

Magnetic fibrous membrane used to generate heat under the alternating magnetic field (AMF) has attracted wide attention due to their application in magnetic hyperthermia. However, there is not magnetic fibrous membrane prepared by melt electrospinning (e-spinning) which is a solvent-free, bio-friendly technology. In this work, polycaprolactone (PCL)/Fe3O4 fiber membrane was prepared by melt e-spinning and using homemade self-powered portable melt e-spinning apparatus. The hand-held melt e-spinning apparatus has a weight of about 450 g and a precise size of 24 cm in length, 6 cm in thickness and 13 cm in height, which is more portable for widely using in the medical field. The PCL/Fe3O4 composite fibers with diameters of 4-17 µm, are very uniform. In addition, the magnetic composite fiber membrane has excellent heating efficiency and thermal cycling characteristics. The results indicated that self-powered portable melt e-spinning apparatus and PCL/Fe3O4 fiber membrane may provide an attractive way for hyperthermia therapy.


Assuntos
Hipertermia Induzida , Nanopartículas Magnéticas de Óxido de Ferro/química , Membranas Artificiais , Nanofibras/química , Poliésteres/química , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Nanofibras/ultraestrutura
5.
Polymers (Basel) ; 12(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906233

RESUMO

As the world faces water shortage and pollution crises, the development of novel visible light photocatalysts to purify water resources is urgently needed. Over the past decades, most of the reported photocatalysts have been in powder or granular forms, creating separation and recycling difficulties. To overcome these challenges, a flexible and recyclable heterostructured TiO2/polyvinylidene fluoride/graphitic carbon nitride (TiO2/PVDF/g-C3N4) composite was developed by combining electrospinning, sintering and hydrothermal methods. In the composite, PVDF was used as a support template for removing and separating the photocatalyst from solution. Compared with pure TiO2, the TiO2/PVDF/g-C3N4 composite exhibited the extended light capture range of TiO2 into the visible light region. The photogenerated carriers were efficiently transferred and separated at the contact interface between TiO2 and g-C3N4 under visible light irradiation, which consequently increased the photocatalytic activity of the photocatalyst. In addition, the flexible composites exhibited excellent self-cleaning properties, and the dye on the photocatalysts was completely degraded by the as-prepared materials. Based on the intrinsic low cost, recyclability, absorption of visible light, facile synthesis, self-cleaning properties and good photocatalytic performances of the composite, the photocatalyst is expected to be used for water treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...