Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Diabetes ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775784

RESUMO

Mouse models are extensively utilized in metabolic studies. However, inherent differences between the species, notably their blood glucose levels, hampered data translation into clinical settings. In this study, we confirmed GLUT1 to be the predominantly expressed glucose transporter in both adult and fetal human ß cells. In comparison, GLUT2 is detected in a small yet significant subpopulation of adult ß cells and is expressed to a greater extent in fetal ß cells. Notably, GLUT1/2 expression in INS+ cells from human stem cell-derived islet-like clusters (SC-islets) exhibited a closer resemblance to that observed in fetal islets. Transplantation of primary human islets or SC-islets, but not murine islets, lowered murine blood glucose to the human glycemic range, emphasizing the critical role of ß cells in establishing species-specific glycemia. We further demonstrate the functional requirements of GLUT1 and GLUT2 in glucose uptake and insulin secretion through chemically inhibiting GLUT1 in primary islets and SCislets, and genetically disrupting GLUT2 in SC-islets. Finally, we developed a mathematical model to predict changes in glucose uptake and insulin secretion as a function of GLUT1/2 expression. Collectively, our findings illustrate the crucial roles of GLUTs in human ß cells, and identify them as key components in establishing species-specific glycemic setpoints.

2.
bioRxiv ; 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38746154

RESUMO

Functional enhancer annotation is a valuable first step for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants for investigation. However, unbiased enhancer discovery in physiologically relevant contexts remains a major challenge. To discover regulatory elements pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers uncovered, we focused on a long-range enhancer ∼664 kb from the ONECUT1 promoter, as coding mutations in ONECUT1 cause pancreatic hypoplasia and neonatal diabetes. Homozygous enhancer deletion in hPSCs was associated with a near-complete loss of ONECUT1 gene expression and compromised pancreatic differentiation. This enhancer contains a confidently fine-mapped type 2 diabetes (T2D) associated variant (rs528350911) which disrupts a GATA motif. Introduction of the risk variant into hPSCs revealed substantially reduced binding of key pancreatic transcription factors (GATA4, GATA6 and FOXA2) on the edited allele, accompanied by a slight reduction of ONECUT1 transcription, supporting a causal role for this risk variant in metabolic disease. This work expands our knowledge about transcriptional regulation in pancreatic development through the characterization of a long-range enhancer and highlights the utility of enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.

3.
Nat Metab ; 6(1): 127-140, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38172382

RESUMO

Mammalian preimplantation development is associated with marked metabolic robustness, and embryos can develop under a wide variety of nutrient conditions, including even the complete absence of soluble amino acids. Here we show that mouse embryonic stem cells (ESCs) capture the unique metabolic state of preimplantation embryos and proliferate in the absence of several essential amino acids. Amino acid independence is enabled by constitutive uptake of exogenous protein through macropinocytosis, alongside a robust lysosomal digestive system. Following transition to more committed states, ESCs reduce digestion of extracellular protein and instead become reliant on exogenous amino acids. Accordingly, amino acid withdrawal selects for ESCs that mimic the preimplantation epiblast. More broadly, we find that all lineages of preimplantation blastocysts exhibit constitutive macropinocytic protein uptake and digestion. Taken together, these results highlight exogenous protein uptake and digestion as an intrinsic feature of preimplantation development and provide insight into the catabolic strategies that enable embryos to sustain viability before implantation.


Assuntos
Blastocisto , Células-Tronco Embrionárias , Camundongos , Animais , Blastocisto/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Aminoácidos/metabolismo , Mamíferos/metabolismo
4.
PeerJ ; 11: e15902, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637166

RESUMO

Background: Mango fruit is prone to decay after harvest and premature senescence, which significantly lowers its quality and commercial value. Methods: The mango fruit (Mangifera indica L.cv. Guixiang) was treated with 0 (control), 2, 5, and 8 mM of reduced glutathione (GSH) after harvest. The fruit was stored at 25 ± 1 °C for 12 days to observe the changes in the antioxidant capacity and postharvest quality. Results: Compared with the control, the 5 mM GSH treatment significantly decreased the weight loss by 44.0% and 24.4%, total soluble solids content by 25.1% and 4.5%, and soluble sugar content by 19.0% and 27.0%. Conversely, the 5 mM GSH treatment increased the firmness by 25.9% and 30.7% on days 4 and 8, respectively, and the titratable acidity content by 115.1% on day 8. Additionally, the 5 mM GSH treatment decreased the malondialdehyde and hydrogen peroxide contents and improved the antioxidant capacity of mango fruit by increasing the superoxide dismutase and peroxidase activities and upregulating the expression of the encoding genes. Meanwhile, the higher levels of monodehydroascorbate reductase, dehydroascorbate reductase, and glutathione reductase enzyme activities and gene expressions accelerated the AsA-GSH cycle, thereby increasing the accumulation of AsA and GSH and maintaining the redox balance. Conclusions: Overall, the experimental results suggest that 5 mM GSH maintains high antioxidant capacity and postharvest quality of mangoes and can use as an effective preservation technique for postharvest mangoes.


Assuntos
Antioxidantes , Mangifera , Frutas , Glutationa/farmacologia , Metabolismo dos Carboidratos
5.
bioRxiv ; 2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37398096

RESUMO

The mechanisms underlying the ability of embryonic stem cells (ESCs) to rapidly activate lineage-specific genes during differentiation remain largely unknown. Through multiple CRISPR-activation screens, we discovered human ESCs have pre-established transcriptionally competent chromatin regions (CCRs) that support lineage-specific gene expression at levels comparable to differentiated cells. CCRs reside in the same topological domains as their target genes. They lack typical enhancer-associated histone modifications but show enriched occupancy of pluripotent transcription factors, DNA demethylation factors, and histone deacetylases. TET1 and QSER1 protect CCRs from excessive DNA methylation, while HDAC1 family members prevent premature activation. This "push and pull" feature resembles bivalent domains at developmental gene promoters but involves distinct molecular mechanisms. Our study provides new insights into pluripotency regulation and cellular plasticity in development and disease. One sentence summary: We report a class of distal regulatory regions distinct from enhancers that confer human embryonic stem cells with the competence to rapidly activate the expression of lineage-specific genes.

6.
Nat Genet ; 55(8): 1336-1346, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37488417

RESUMO

Comprehensive enhancer discovery is challenging because most enhancers, especially those contributing to complex diseases, have weak effects on gene expression. Our gene regulatory network modeling identified that nonlinear enhancer gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Using human embryonic stem cell definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. We discovered a comprehensive set of enhancers for each of the core endoderm-specifying transcription factors. Many enhancers had strong effects mid-transition but weak effects post-transition, consistent with the nonlinear temporal responses to enhancer perturbation predicted by the modeling. Integrating three-dimensional genomic information, we were able to develop a CTCF-loop-constrained Interaction Activity model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and systematic enhancer discovery in both normal and pathological cell state transitions.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Humanos , Elementos Facilitadores Genéticos/genética , Diferenciação Celular/genética , Fatores de Transcrição/genética , Redes Reguladoras de Genes/genética , Cromatina/genética
7.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205540

RESUMO

Pluripotent stem cells are defined by both the ability to unlimitedly self-renew and differentiate to any somatic cell lineage, but understanding the mechanisms that control stem cell fitness versus the pluripotent cell identity is challenging. We performed four parallel genome-scale CRISPR-Cas9 screens to investigate the interplay between these two aspects of pluripotency. Our comparative analyses led to the discovery of genes with distinct roles in pluripotency regulation, including many mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control stem cell identity. We further discovered a core set of factors that control both stem cell fitness and pluripotency identity, including an interconnected network of chromatin factors that safeguard pluripotency. Our unbiased and systematic screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide rich datasets for exploring pluripotent cell identity versus self-renewal, and offer a valuable model for categorizing gene function in broad biological contexts.

8.
bioRxiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945628

RESUMO

Comprehensive enhancer discovery is challenging because most enhancers, especially those affected in complex diseases, have weak effects on gene expression. Our network modeling revealed that nonlinear enhancer-gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Utilizing hESC definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. The screen discovered a comprehensive set of enhancers (4 to 9 per locus) for each of the core endoderm lineage-specifying transcription factors, and many enhancers had strong effects mid-transition but weak effects post-transition. Through integrating enhancer activity measurements and three-dimensional enhancer-promoter interaction information, we were able to develop a CTCF loop-constrained Interaction Activity (CIA) model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and more comprehensive enhancer discovery in both normal and pathological cell state transitions.

9.
J Agric Food Chem ; 70(48): 15126-15133, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36420856

RESUMO

Although sulforaphane (SFN) is reported to ameliorate the excessive accumulation of lipid droplets (LDs) in hepatocytes, its underlying mechanism remains unclear. This paper aims to investigate how SFN induces hepatic LD degradation via activating macroautophagy. High-fat diet and free fatty acids (FFAs) were used to induce excessive LD formation in hepatocytes in vivo and in vitro, respectively. SFN-induced macroautophagy was shown by the increased LC3 protein expression both (1.32 ± 0.18) in vivo and (2.43 ± 0.22) in vitro. The mRNA levels of Lc3 (1.99 ± 0.16), Atg4 (2.12 ± 0.23), Ulk1 (1.19 ± 0.12), Atg7 (1.25 ± 0.11), and Atg5 (0.81 ± 0.1) genes were elevated by SFN. SFN individually enhanced the localization of LC3 (0.41 ± 0.15), LAMP1 (0.66 ± 0.14), ATG7 (0.26 ± 0.08), and ATG5 (0.38 ± 0.09) with LDs, indicating the occurrence of lipophagy. In the components of LDs isolated from SFN treatment, the expressions of LC3, ATG7, and ATG5 protein were largely increased both in vivo and in vitro. LDs were visualized in autophagosomes which confirmed that the lipophagy was triggered by SFN. Moreover, SFN treatment improved the profile of FFAs which was characterized by increasing the FFAs in liver (total FFA: 261.51 ± 39.58 µM/g) and serum (total FFA: 967.59 ± 239.18 nM/mL). After silencing the nrf2 gene, ATG7 and ATG5 protein expressions were decreased and attenuated this induction by SFN. Nrf2 gene silencing inversely increased TG contents. In summary, SFN enhanced the LD degradation via stimulating lipophagy in a Nrf2-dependent manner.


Assuntos
Metabolismo dos Lipídeos , Fígado , Proteína 5 Relacionada à Autofagia/genética
10.
Food Funct ; 13(15): 8274-8282, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833889

RESUMO

Background: Whole grains present distinguished benefits to a handful of metabolic syndromes (MetS). However, the preventive effects of germinated brown rice (GBR), a new type of brown rice, on patients with type 2 diabetes (T2DM) are rarely reported. Objectives: To investigate whether replacing 100 g refined white rice (RWR) with equal GBR per day is effective in T2DM and its underlying mechanisms. Methods: Ninety-nine qualified T2DM patients (64.58 ± 5.06 years old) were recruited. All patients were randomly divided into GBR group (100 g d-1 GBR for 12 weeks) and control group (keep the regular diet). Food frequency questionnaires, and fresh stool and serum samples were collected before and after the intervention, followed by various measurements. Results: Fasting blood glucose was obviously decreased after GBR intervention with an effective rate of 62%. Glycated hemoglobin (HbA1c) levels were decreased in the GBR group with no significance. In the GBR group, the abundance of beneficial bacteria in feces was increased, while harmful bacteria were decreased. The percentage of Bacteroides (57.2%) was largely increased. In addition, three types of short-chain fatty acids (SCFAs) including acetic acid, propanoic acid, and butyric acid were increased significantly by GBR (p < 0.05). The secretion of GLP and PYY in serum, two kinds of gastrointestinal hormones downstream of SCFAs, was stimulated by GBR (p < 0.01). Meanwhile, GBR intervention could balance the ratio of Treg/Th17 immune cells in PBMCs and reduce the levels of inflammatory factors including IL-6, IL-8, and LPS in serum, which improved the permeability of intestinal mucosa. Conclusions: GBR (100 g d-1 for 12 weeks) has positive improvement in the fasting blood glucose for T2DM patients, which attributed to the recovery of intestinal homeostasis.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Oryza , Idoso , Glicemia , Homeostase , Humanos , Pessoa de Meia-Idade , Grãos Integrais
11.
Trends Cell Biol ; 32(3): 259-271, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34955367

RESUMO

The epigenome plays a crucial role in modulating the activity of regulatory elements, thereby orchestrating diverse transcriptional programs during embryonic development. Human (h)PSC stepwise differentiation provides an excellent platform for capturing dynamic epigenomic events during lineage transition in human development. Here we discuss how recent technological advances, from epigenomic mapping to targeted perturbation, are providing a more comprehensive appreciation of remodeling of the chromatin landscape during human development with implications for aberrant rewiring in disease. We predict that the continuous innovation of hPSC differentiation methods, epigenome mapping, and CRISPR (clustered regularly interspaced short palindromic repeats) perturbation technologies will allow researchers to build toward not only a comprehensive understanding of the epigenomic mechanisms governing development, but also a highly flexible way to model diseases with opportunities for translation.


Assuntos
Epigenoma , Células-Tronco Pluripotentes , Cromatina/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epigenoma/genética , Epigenômica , Humanos
12.
Nature ; 568(7751): 254-258, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30842661

RESUMO

Mitochondrial metabolism is an attractive target for cancer therapy1,2. Reprogramming metabolic pathways could improve the ability of metabolic inhibitors to suppress cancers with limited treatment options, such as triple-negative breast cancer (TNBC)1,3. Here we show that BTB and CNC homology1 (BACH1)4, a haem-binding transcription factor that is increased in expression in tumours from patients with TNBC, targets mitochondrial metabolism. BACH1 decreases glucose utilization in the tricarboxylic acid cycle and negatively regulates transcription of electron transport chain (ETC) genes. BACH1 depletion by shRNA or degradation by hemin sensitizes cells to ETC inhibitors such as metformin5,6, suppressing growth of both cell line and patient-derived tumour xenografts. Expression of a haem-resistant BACH1 mutant in cells that express a short hairpin RNA for BACH1 rescues the BACH1 phenotype and restores metformin resistance in hemin-treated cells and tumours7. Finally, BACH1 gene expression inversely correlates with ETC gene expression in tumours from patients with breast cancer and in other tumour types, which highlights the clinical relevance of our findings. This study demonstrates that mitochondrial metabolism can be exploited by targeting BACH1 to sensitize breast cancer and potentially other tumour tissues to mitochondrial inhibitors.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/antagonistas & inibidores , Hemina/uso terapêutico , Metformina/uso terapêutico , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Fatores de Transcrição de Zíper de Leucina Básica/deficiência , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Transporte de Elétrons/genética , Feminino , Glucose/metabolismo , Hemina/metabolismo , Xenoenxertos , Humanos , Metformina/metabolismo , Camundongos , Camundongos Nus , Mitocôndrias/genética , Proteólise , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Small ; 13(33)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28692766

RESUMO

Vertically oriented highly crystalline 2D layered (BA)2 (MA)n-1 Pbn I3n+1 (BA = CH3 (CH2 )3 NH3 , MA = CH3 NH3 , n = 3, 4) perovskite thin-films are fabricated with the aid of ammonium thiocyanate (NH4 SCN) additive through one-step spin-coating process. The humidity-stability of the film is certified by the almost unchanged X-ray diffraction patterns after exposed to humid atmosphere (Hr = 55 ± 5%) for 40 d. The photovoltaic devices with the structure of indium tin oxide(ITO)/poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate)/(BA)2 (MA)n-1 Pbn I3n+1 (n = 3,4)/[6,6]-phenyl-C61 -butyric acid methyl ester/Bathocuproine/Ag are fabricated. The devices based on (BA)2 (MA)2 Pb3 I10 perovskite (n = 3) with the precursor composition of BAI:methylammonium iodide:PbI2 :NH4 SCN = 2:2:3:1 (by molar ratio) show an averaged power conversion efficiency (PCE) of 6.82%. In the case of (BA)2 (MA)3 Pb4 I13 (n = 4), a higher PCE of 8.79% is achieved. Both of the unsealed devices perform unique stability with almost unchanged PCE during the period of storage in purified N2 glove box. This work provides a simple and effective method to enhance the efficiency of the 2D perovskite solar cell.

14.
Nanotechnology ; 28(30): 305402, 2017 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-28581437

RESUMO

Silver nanowires (AgNWs) and graphene are both promising candidates as a transparent conductive electrode (TCE) to replace expensive and fragile indium tin oxide (ITO) TCE. A synergistically optimized performance is expected when the advantages of AgNWs and graphene are combined. In this paper, the AgNW-graphene hybrid electrode is constructed by depositing a graphene layer on top of the network of AgNWs. Compared with the pristine AgNWs electrode, the AgNW-graphene TCE exhibits reduced sheet resistance, lower surface roughness, excellent long-term stability, and corrosion resistance in corrosive liquids. The graphene layer covering the AgNWs provides additional conduction pathways for electron transport and collection by the electrode. Benefiting from these advantages of the hybrid electrodes, we achieve a power conversion efficiency of 8.12% of inverted organic solar cells using PTB7:PC71BM as the active layer, which is compared to that of the solar cells based on standard ITO TCE but about 10% higher than that based on AgNWs TCE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...