Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(32): 36487-36502, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35921662

RESUMO

Glioblastoma (GBM) has a distinct internal environment characterized by high levels of glutathione (GSH) and low oxygen partial pressure, which significantly restrict most drugs' effectiveness. Arsenic-based drugs are emerging candidates for treating solid tumors; however, relatively high doses in solo systems and inconsistent complementary systems severely damage the normal tissues. We proposed a novel covalently conjugated strategy for arsenic-based therapy via arsenic-boronic acid complex formation. The boronic acid was modified on silver (AgL) to capture AsV under an alkaline condition named arsenate plasmonic complex (APC) with a distinct Raman response. The APC can precisely release the captured AsV in lysosomal acidic pH that specifically targets TME to initiate a multimodal therapeutic effect such as GSH depletion and reactive oxygen species generation. In addition, GSH activation leads to subconverted AsV into AsIII, which further facilitated glutathione peroxidase (GPx) and superoxide dismutase inhibition, whereas the tumor selective etching of the silver core triggered by endogenous H2O2 that can oxidize to generate highly toxic Ag ions produces and supplies O2 to help the alleviated hypoxia. Both in vitro and in vivo data verify the APC-based chemotherapy paving the way for efficient nanomedicine-enabled boronate affinity-based arsenic chemotherapeutics for on demand site-specific cancer combination treatment of GBM tumors.


Assuntos
Arsênio , Glioblastoma , Pró-Fármacos , Ácidos Borônicos/farmacologia , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Glutationa/química , Humanos , Peróxido de Hidrogênio , Pró-Fármacos/farmacologia , Prata , Microambiente Tumoral
2.
Nanoscale ; 13(37): 15981, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34533181

RESUMO

Correction for 'SERS-based nanostrategy for rapid anemia diagnosis' by Pir Muhammad et al., Nanoscale, 2020, 12, 1948-1957, DOI: 10.1039/C9NR09152A.

3.
Nano Lett ; 21(8): 3418-3425, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33827216

RESUMO

Self-assembly is a powerful means to fabricate multifunctional smart nanotheranostics. However, the complicated preparation, toxicity of responsive carriers, and low loading efficiency of drug cargo hinder the outcome. Herein, we developed a responsive carrier-free noncovalent self-assembly strategy of a metallized Au(III) tetra-(4-pyridyl) porphine (AuTPyP) anticancer drug for the preparation of a heat/acid dual-stimulated nanodrug, and it generated a better photothermal effect than monomers under irradiation. The photothermal effect promoted the protonation of the hydrophobic pyridyl group and the following release into tumorous acidic microenvironments. With cRGD modification, the released drug induced the aggravation of intracellular reactive oxygen species (ROS) via the activity inhibition of thioredoxin reductase (TrxR) for synergistic chemo-photothermal therapy of tumors.


Assuntos
Antineoplásicos , Hipertermia Induzida , Nanopartículas , Porfirinas , Doxorrubicina , Ouro , Fototerapia , Terapia Fototérmica
4.
Front Oncol ; 10: 581985, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178610

RESUMO

Melanoma is the deadliest skin tumor and is prone to distant metastases. The incidence of melanoma has increased rapidly in the past few decades, and current trends indicate that this growth is continuing. This study was aimed to explore the molecular mechanisms of melanoma pathogenesis and discover underlying pathways and genes associated with melanoma. We used high-throughput expression data to study differential expression profiles of related genes in melanoma. The differentially expressed genes (DEGs) of melanoma in GSE15605, GSE46517, GSE7553, and the Cancer Genome Atlas (TCGA) datasets were analyzed. Differentially expressed genes (DEGs) were identified by paired t-test. Then the DEGs were performed cluster and principal component analyses and protein-protein interaction (PPI) network construction. After that, we analyzed the differential genes through bioinformatics and got hub genes. Finally, the expression of hub genes was confirmed in the TCGA databases and collected patient tissue samples. Total 144 up-regulated DEGs and 16 down-regulated DEGs were identified. A total of 17 gene ontology analysis (GO) terms and 11 pathways were closely related to melanoma. Pathway of pathways in cancer was enriched in 8 DEGs, such as junction plakoglobin (JUP) and epidermal growth factor receptor (EGFR). In the PPI networks, 9 hub genes were obtained, such as loricrin (LOR), filaggrin (FLG), keratin 5 (KRT5), corneodesmosin (CDSN), desmoglein 1 (DSG1), desmoglein 3 (DSG3), keratin 1 (KRT1), involucrin (IVL), and EGFR. The pathway of pathways in cancer and its enriched DEGs may play important roles in the process of melanoma. The hub genes of DEGs may become promising melanoma candidate genes. Five key genes FLG, DSG1, DSG3, IVL, and EGFR were identified in the TCGA database and melanoma tissues. The results suggested that FLG, DSG1, DSG3, IVL, and EGFR might play important roles and potentially be valuable in the prognosis and treatment of melanoma. These hub genes might well have clinical significance as diagnostic markers.

5.
Int J Med Sci ; 17(12): 1803-1810, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714083

RESUMO

Since the end of 2019, a new type of coronavirus pneumonia (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has been spreading rapidly throughout the world. Previously, there were two outbreaks of severe coronavirus caused by different coronaviruses worldwide, namely Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and the Middle East Respiratory Syndrome Coronavirus (MERS-CoV). This article introduced the origin, virological characteristics and epidemiological overview of SARS-CoV-2, reviewed the currently known drugs that may prevent and treat coronavirus, explained the characteristics of the new coronavirus and provided novel information for the prevention and treatment of COVID-19.


Assuntos
Betacoronavirus , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/prevenção & controle , Pandemias/prevenção & controle , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/prevenção & controle , Amidas/farmacologia , Amidas/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Betacoronavirus/isolamento & purificação , Betacoronavirus/fisiologia , COVID-19 , Cloroquina/análogos & derivados , Cloroquina/uso terapêutico , Clorpromazina/uso terapêutico , Coronavirus/genética , Infecções por Coronavirus/genética , Ciclofilinas/antagonistas & inibidores , Desenvolvimento de Medicamentos , Reposicionamento de Medicamentos , Medicamentos de Ervas Chinesas/uso terapêutico , Endocitose/efeitos dos fármacos , Humanos , Soros Imunes , Indutores de Interferon/uso terapêutico , Inibidores da Síntese de Ácido Nucleico/farmacologia , Inibidores da Síntese de Ácido Nucleico/uso terapêutico , Pneumonia Viral/genética , Pirazinas/farmacologia , Pirazinas/uso terapêutico , Resveratrol/farmacologia , Resveratrol/uso terapêutico , SARS-CoV-2 , Vacinas Virais/uso terapêutico , Tratamento Farmacológico da COVID-19
6.
Nanoscale ; 12(3): 1948-1957, 2020 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-31907500

RESUMO

Iron detection is one of the critical markers to diagnose multiple blood-related disorders that correspond to various biological dysfunctions. The currently available anemia detection approach can be used only for pre-treated blood samples that interfere with the actual iron level in blood. Real-time detection approaches with higher sensitivity and specificity are certainly needed to cope with the commercial level clinical analyses. Herein, we presented a novel strategy to determine the blood iron that can be easily practiced at commercial levels. The blend of well-known iron-cyanide chemistry with nanotechnology is advantageous with ultrahigh sensitivity in whole blood analysis without any pre-treatments. This approach is a combined detection system of the conventional assay (UV-visible spectroscopy) with surface-enhanced Raman scattering (SERS). Organic cyanide modified silver nanoparticles (cAgNPs) can selectively respond to Fe3+ ions and Hb protein with a detection limit of 10 fM and 0.46 µg mL-1, respectively, without being affected by matrix interfering species in the complex biological fluid. We confirmed the clinical potential of our new cAgNPs by assessing iron-status in multiple anemia patients and normal controls. Our SERS-based iron quantitation approach is highly affordable for bulk-samples, cheap, quick, flexible, and useful for real-time clinical assays. Such a method for metal-chelation has extendable features of therapeutics molecular tracking within more complex living systems at cellular levels.


Assuntos
Anemia , Cianetos/química , Ferro/sangue , Nanopartículas Metálicas/química , Prata/química , Anemia/sangue , Anemia/diagnóstico , Humanos , Espectrofotometria Ultravioleta , Análise Espectral Raman
8.
Biomaterials ; 229: 119576, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31704467

RESUMO

Dual-modal imaging guided photodynamic therapy (PDT) of multifunctional nanocomposites holds great promise for precision tumor theranostics. However, poor heterogeneous interfacial compatibility between functional components, low hydrophilicity and complicated preparation of nanocomposites remain major obstacles for further bioapplication. Herein, a facile central metal-derived co-assembly strategy is developed to effectively integrate gadolinium porphyrin (GdTPP) contrast agent and Zinc porphyrin (ZnTPP) photosensitizer into a homogeneous GdTPP/ZnTPP nanocomposites (GZNs). GZNs possesses the following advantages: (1) Greatly improved interfacial compatibility facilitated by incorporating two metalporphyrins with same group (phenyl-) and different central metal atoms (Zn and Gd) leading to higher yield (4.7-5 fold) than either monocomponent nanoparticles. (2) Poor dispersity of GdTPP nanoparticles is greatly improved after integrating with ZnTPP blocks. (3) The GZNs inherit excellent fluorescence imaging, high relaxation rate (8.18 mM-1 s-1) and singlet oxygen production from two raw metalporphyrins. After camouflaging with homotypic cancer cell membrane for immunologic escape, the HeLa membrane coated GZNs (mGZNs) show enhanced in vivo MR/FL imaging guided anti-tumor targeting efficiency of 80.6% for HeLa cells. Our new strategy using central metal-derived co-assembly of homogeneous building blocks greatly improves interfacial compatibility to achieve combined functions for visualized cancer theranostics.


Assuntos
Nanocompostos , Nanopartículas , Fotoquimioterapia , Porfirinas , Biomimética , Gadolínio , Células HeLa , Humanos , Metaloporfirinas
9.
J Cell Biochem ; 120(10): 17303-17311, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31106485

RESUMO

SR splicing-factors (SRSFs) play a vital role in carcinogenesis. SRSF5 was demonstrated to be upregulated in lung cancer and identified as a novel prognostic indicator for small-cell lung cancer. However, the role of SRSF5 in the pathogenesis of non-small cell lung cancer (NSCLC) and the molecular mechanism involved are still undefined. The expression of SRSF5 in NSCLC cells was detected by quantitative real-time polymerase chain reaction and Western blot analysis. The proliferation of cells was evaluated by cell counting kit-8 and BrdU assays. Apoptosis was assessed by flow cytometry and Western blot analysis of apoptosis-associated proteins including B-cell lymphoma 2 (Bcl-2), Bax, and cytochrome C (Cyt C). Glycolysis was detected by determining glucose consumption, lactate production, and pyruvate kinase M2 (PKM2) expression. We found that SRSF5 messenger RNA and protein levels were elevated in NSCLC cells. SRSF5 knockdown inhibited the proliferation and Ki67 expression in NSCLC cells. SRSF5 silencing increased the apoptotic rate, upregulated Bax and Cyt C, and decreased Bcl-2 level in NSCLC cells. Moreover, Knockdown of SRSF5 repressed glycolysis in NSCLC cells via reducing PKM2 expression. Enhanced glycolysis by PKM2 overexpression attenuated the effects of SRSF5 silencing on NSCLC cell proliferation and apoptosis. Overall, knockdown of SRSF5 inhibited proliferative ability and induced apoptosis by suppressing PKM2 expression in NSCLC cells.


Assuntos
Biomarcadores Tumorais/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Proteínas de Transporte/metabolismo , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/patologia , Proteínas de Membrana/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Hormônios Tireóideos/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Transporte/genética , Proliferação de Células , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Proteínas de Membrana/genética , Fatores de Processamento de Serina-Arginina/genética , Hormônios Tireóideos/genética , Células Tumorais Cultivadas , Proteínas de Ligação a Hormônio da Tireoide
10.
Oncol Res ; 27(6): 681-690, 2019 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-30832754

RESUMO

Plasmacytoma variability translocation 1 (PVT1), an oncogene, has been reported to be highly expressed in many tumors, including human glioma, gastric cancer, and non-small cell lung cancer. Functionally, it could also regulate the development of tumor cells. However, its specific roles and pathogenesis in human gliomas are still not clear. This study investigated the function and mechanism of PVT1 knockdown in the proliferation and malignant transformation of human gliomas. We first examined the expression levels of PVT1 and miR-424 in human glioma tissues and cell lines. We also used gene manipulation techniques to explore the effects of PVT1 knockdown on cell viability, migration, invasion, and miR-424. We found that PVT1 knockdown effectively inhibited cell viability, migration, and invasion of human glioma cells and increased miR-424 expression. Based on the negative correlation between PVT1 and miR-424, we then confirmed the direct interaction between PVT1 and miR-424 using RNA immunoprecipitation (RIP) and luciferase reporter assays. Further, we established a xenograft nude mouse model to determine the role and mechanism of PVT1 on tumor growth in vivo. In addition, PVT1 knockdown was shown to promote miR-424 in vivo. In summary, the present study demonstrated that PVT1 knockdown could negatively regulate miR-424 to inhibit human glioma cell activity, migration, and invasiveness. PVT1 knockdown could negatively regulate miR-424 to inhibit cellular activity, migration, and invasiveness in human gliomas, which explained the oncogenic mechanism of PVT1 in human gliomas. It also suggested that PVT1 might be a novel therapeutic target for human gliomas.


Assuntos
Regulação Neoplásica da Expressão Gênica , Glioma/genética , Glioma/patologia , MicroRNAs/genética , Interferência de RNA , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células , Sobrevivência Celular/genética , Biologia Computacional/métodos , Progressão da Doença , Epistasia Genética , Técnicas de Silenciamento de Genes , Genes Reporter , Humanos
11.
Oncol Rep ; 37(5): 3146-3154, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28405690

RESUMO

PFN2 is an invasion promoter in several cancers including lung cancer. However, the probable effects and underlying mechanisms of PFN2 in tumor cell epithelial-mesenchymal-transition (EMT) of non-small cell lung cancer (NSCLC) remain poorly understood. The protein and mRNA levels of PFN2 in human bronchial epithelial cell line 16HBE and three NSCLC cell lines A549, NCI-H520 and 95D were assessed. The gain-of-function (overexpression) and loss­of-function (siRNA) experiments of PFN2 were performed in 95D cells. A dual-luciferase reporter assay, western blotting and real-time PCR were used to investigate the relationship between PFN2 and miR­30a­5p. PFN2 was upregulated in three NSCLC cell lines, and the highest in 95D cell line. Furthermore, the upregulation of PFN2 promoted, whereas the downregulation of PFN2 suppressed invasion and EMT in 95D. Dual-luciferase reporter assay showed that miR­30a­5p directly interacts with the 3'-untranslated region (3'-UTR) of PFN2 mRNA. Interestingly, miR­30a­5p negatively regulates the expression of PFN2 and suppresses EMT and invasion in 95D. In summary, the present study demonstrated that miR­30a­5p inhibits EMT and invasion in high invasive NSCLC cell lines via targeting PFN2. Suggesting the association of miR­30a­5p and PFN2 may play an essential role in the development of NSCLC by modulating EMT and cell invasion.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Profilinas/genética , Profilinas/metabolismo , Células A549 , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Transição Epitelial-Mesenquimal , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Invasividade Neoplásica
12.
Oncol Rep ; 34(5): 2776-81, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26323553

RESUMO

HS1 associated protein X-1 (HAX-1), a substrate of Src family tyrosine kinases, plays a critical role in cell apoptosis. However, its functions in prostate cancer remains unclear. The present study explored the role and mechanism of HAX-1 in cancer cell apoptosis. The mRNA and protein levels of HAX-1 in the prostate cancer cell lines PC-3, VCaP and DU145 were assessed. Cell proliferation, apoptosis and caspase-9 activities were assessed in DU145 after HAX-1 siRNA treatment. The mRNA and protein levels of HAX-1 in prostate cancer cell lines PC-3, VCaP and DU145 were significantly higher than those in the primary prostate epithelial cells, and DU145 possess the highest mRNA and protein levels compared to PC-3 and VCaP. When HAX-1 was knocked down in DU145, cell proliferation was significantly decreased, accompanied by a decrease in Ki67 protein expression. Compared with the control and control siRNA groups, HAX-1 siRNA promoted cell apoptosis and caspase-9 activation in DU145. Furthermore, prostate cancer cells co-transfected with HAX-1 and caspase-9 promoted viability and reduced apoptosis. In contract, co-transfection of caspase-9 and HAX-1 siRNA suppressed the cell viability and enhanced apoptosis. In summary, the present study demonstrated that HAX-1 inhibits cell apoptosis through caspase-9 inactivation.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Caspase 9/metabolismo , Neoplasias da Próstata/metabolismo , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Neoplasias da Próstata/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA