Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Front Immunol ; 15: 1382655, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38803494

RESUMO

Introduction: Global microplastic (MP) pollution is now well recognized, with humans and animals consuming and inhaling MPs on a daily basis, with a growing body of concern surrounding the potential impacts on human health. Methods: Using a mouse model of mild COVID-19, we describe herein the effects of azide-free 1 µm polystyrene MP beads, co-delivered into lungs with a SARS-CoV-2 omicron BA.5 inoculum. The effect of MPs on the host response to SARS-CoV-2 infection was analysed using histopathology and RNA-Seq at 2 and 6 days post-infection (dpi). Results: Although infection reduced clearance of MPs from the lung, virus titres and viral RNA levels were not significantly affected by MPs, and overt MP-associated clinical or histopathological changes were not observed. However, RNA-Seq of infected lungs revealed that MP exposure suppressed innate immune responses at 2 dpi and increased pro-inflammatory signatures at 6 dpi. The cytokine profile at 6 dpi showed a significant correlation with the 'cytokine release syndrome' signature observed in some COVID-19 patients. Discussion: The findings are consistent with the recent finding that MPs can inhibit phagocytosis of apoptotic cells via binding of Tim4. They also add to a growing body of literature suggesting that MPs can dysregulate inflammatory processes in specific disease settings.


Assuntos
COVID-19 , Modelos Animais de Doenças , Imunidade Inata , Pulmão , Microplásticos , SARS-CoV-2 , Animais , COVID-19/imunologia , COVID-19/virologia , Imunidade Inata/efeitos dos fármacos , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , Camundongos , Pulmão/imunologia , Pulmão/virologia , Pulmão/patologia , Citocinas/metabolismo , Humanos , Pneumonia Viral/imunologia , Pneumonia Viral/virologia , Feminino , Síndrome da Liberação de Citocina/imunologia , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/virologia , Betacoronavirus/imunologia , Pandemias
2.
Ecotoxicol Environ Saf ; 275: 116278, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38564860

RESUMO

Due to the rise in temperature and sea level caused by climate change, the detection rate of aflatoxin B1 (AFB1) in food crops has increased dramatically, and the frequency and severity of aflatoxicosis in humans and animals are also increasing. AFB1 has strong hepatotoxicity, causing severe liver damage and even cancer. However, the mechanism of AFB1 hepatotoxicity remains unclear. By integrating network toxicology, molecular docking and in vivo experiments, this research was designed to explore the potential hepatotoxicity mechanisms of AFB1. Thirty-three intersection targets for AFB1-induced liver damage were identified using online databases. PI3K/AKT1, MAPK, FOXO1 signaling pathways, and apoptosis were significantly enriched. In addition, the proteins of ALB, AKT1, PIK3CG, MAPK8, HSP90AA1, PPARA, MAPK1, EGFR, FOXO1, and IGF1 exhibited good affinity with AFB1. In vivo experiments, significant pathological changes occurred in the liver of mice. AFB1 induction increased the expression levels of EGFR, ERK, and FOXO1, and decreased the expression levsls of PI3K and AKT1. Moreover, AFB1 treatment caused an increase in Caspase3 expression, and a decrease in Bcl2/Bax ratio. By combining network toxicology with in vivo experiments, this study confirms for the first time that AFB1 promotes the FOXO1 signaling pathway by inactivating PI3K/AKT1 and activating EGFR/ERK signaling pathways, hence aggravating hepatocyte apoptosis. This research provides new strategies for studying the toxicity of environmental pollutants and new possible targets for the development of hepatoprotective drugs.


Assuntos
Aflatoxina B1 , Doença Hepática Induzida por Substâncias e Drogas , Humanos , Camundongos , Animais , Simulação de Acoplamento Molecular , Aflatoxina B1/toxicidade , Fígado/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Receptores ErbB/metabolismo
3.
J Am Chem Soc ; 146(12): 8520-8527, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491937

RESUMO

Two-dimensional (2D) zeolite, with a high aspect ratio, has more open skeletons and accessible active sites than its three-dimensional (3D) counterpart. However, traditional methods of obtaining 2D zeolites often cause structural damage and widespread skeleton defects, hindering efficient selectivity in molecular separation. In this study, we present, for the first time, a direct epitaxial synthesis of 2D zeolite (Epi-MWW) guided by hexagonal boron nitride (h-BN) with a coincidence matching of site lattices to MWW zeolite. The as-grown Epi-MWW zeolite possesses a high crystallinity and intact hexagonal 2D morphology, with an average thickness of 10 nm and an aspect ratio of over 50. Thanks to its excellent molecular accessibility, the diffusion time constants of o-xylene (OX) and p-xylene (PX) are as 12 and 133 times higher than those of conventional MCM-22, respectively; the PX/OX selectivity of Epi-MWW is 7.4 times better than MCM-22 as calculated by the ideal adsorbed solution theory.

4.
Front Microbiol ; 14: 1320856, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38075874

RESUMO

The reduced pathogenicity of the omicron BA.1 sub-lineage compared to earlier variants is well described, although whether such attenuation is retained for later variants like BA.5 and XBB remains controversial. We show that BA.5 and XBB isolates were significantly more pathogenic in K18-hACE2 mice than a BA.1 isolate, showing increased neurotropic potential, resulting in fulminant brain infection and mortality, similar to that seen for original ancestral isolates. BA.5 also infected human cortical brain organoids to a greater extent than the BA.1 and original ancestral isolates. In the brains of mice, neurons were the main target of infection, and in human organoids neuronal progenitor cells and immature neurons were infected. The results herein suggest that evolving omicron variants may have increasing neurotropic potential.

5.
Front Microbiol ; 14: 1238542, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869655

RESUMO

RT-qPCR remains a key diagnostic methodology for COVID-19/SARS-CoV-2. Typically, nasal or saliva swabs from patients are placed in virus transport media (VTM), RNA is extracted at the pathology laboratory, and viral RNA is measured using RT-qPCR. In this study, we describe the use of TNA-Cifer Reagent E in a pre-clinical evaluation study to inactivate SARS-CoV-2 as well as prepare samples for RT-qPCR. Adding 1 part TNA-Cifer Reagent E to 5 parts medium containing SARS-CoV-2 for 10 min at room temperature inactivated the virus and permitted RT-qPCR detection. TNA-Cifer Reagent E was compared with established column-based RNA extraction and purification methodology using a panel of human clinical nasal swab samples (n = 61), with TNA-Cifer Reagent E showing high specificity (100%) and sensitivity (97.37%). Mixtures of SARS-CoV-2 virus and TNA-Cifer Reagent E could be stored for 3 days at room temperature or for 2 weeks at 4°C without the loss of RT-qPCR detection sensitivity. The detection sensitivity was preserved when TNA-Cifer Reagent E was used in conjunction with a range of VTM for saliva samples but only PBS (Gibco) and Amies Orange for nasal samples. Thus, TNA-Cifer Reagent E improves safety by rapidly inactivating the virus during sample processing, potentially providing a safe means for molecular SARS-CoV-2 testing outside traditional laboratory settings. The reagent also eliminates the need for column-based and/or automated viral RNA extraction/purification processes, thereby providing cost savings for equipment and reagents, as well as reducing processing and handling times.

6.
Plant Physiol Biochem ; 201: 107763, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37301187

RESUMO

Cadmium (Cd) and sodium (Na) are two of the most phytotoxic metallic elements causing environmental and agricultural problems. Metallothioneins (MTs) play an important role in the adaptation to abiotic stress. We previously isolated a novel type 2 MT gene from Halostachys caspica (H. caspica), named HcMT, which responded to metal and salt stress. To understand the regulatory mechanisms controlling HcMT expression, we cloned the HcMT promoter and characterized its tissue-specific and spatiotemporal expression patterns. ß-Glucuronidase (GUS) activity analysis showed that the HcMT promoter was responsive to CdCl2, CuSO4, ZnSO4 and NaCl stress. Therefore, we further investigated the function of HcMT under abiotic stress in yeast and Arabidopsis thaliana (Arabidopsis). In CdCl2, CuSO4 or ZnSO4 stress, HcMT significantly enhanced the metal ions tolerance and accumulation in yeast through function as a metal chelator. Moreover, the HcMT protein also protected yeast cells from NaCl, PEG and hydrogen peroxide (H2O2) toxicity with less effectiveness. However, transgenic Arabidopsis carrying HcMT gene only displayed tolerance to CdCl2 and NaCl, accompanying by higher content of Cd2+ or Na+ and lower H2O2, compared to wild-type (WT) plants. Next, we demonstrated that the recombinant HcMT protein has the ability to bind Cd2+ and the potential of scavenging ROS (reactive oxygen species) in vitro. This result further confirmed that the role of HcMT to influence plants to CdCl2 and NaCl stress may bind metal ions and scavenge ROS. Overall, we described the biological functions of HcMT and developed a metal- and salt-inducible promoter system for using in genetic engineering.


Assuntos
Arabidopsis , Chenopodiaceae , Plantas Tolerantes a Sal/genética , Cádmio/toxicidade , Cádmio/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Saccharomyces cerevisiae/genética , Metalotioneína/genética , Metalotioneína/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Peróxido de Hidrogênio/metabolismo , Cloreto de Sódio/metabolismo , Chenopodiaceae/genética , Estresse Fisiológico/genética
7.
Comput Biol Med ; 162: 107052, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37263151

RESUMO

OBJECTIVE: ascending aortic aneurysm growth prediction is still challenging in clinics. In this study, we evaluate and compare the ability of local and global shape features to predict the ascending aortic aneurysm growth. MATERIAL AND METHODS: 70 patients with aneurysm, for which two 3D acquisitions were available, are included. Following segmentation, three local shape features are computed: (1) the ratio between maximum diameter and length of the ascending aorta centerline, (2) the ratio between the length of external and internal lines on the ascending aorta and (3) the tortuosity of the ascending tract. By exploiting longitudinal data, the aneurysm growth rate is derived. Using radial basis function mesh morphing, iso-topological surface meshes are created. Statistical shape analysis is performed through unsupervised principal component analysis (PCA) and supervised partial least squares (PLS). Two types of global shape features are identified: three PCA-derived and three PLS-based shape modes. Three regression models are set for growth prediction: two based on gaussian support vector machine using local and PCA-derived global shape features; the third is a PLS linear regression model based on the related global shape features. The prediction results are assessed and the aortic shapes most prone to growth are identified. RESULTS: the prediction root mean square error from leave-one-out cross-validation is: 0.112 mm/month, 0.083 mm/month and 0.066 mm/month for local, PCA-based and PLS-derived shape features, respectively. Aneurysms close to the root with a large initial diameter report faster growth. CONCLUSION: global shape features might provide an important contribution for predicting the aneurysm growth.


Assuntos
Aneurisma da Aorta Ascendente , Aneurisma Aórtico , Humanos , Aorta/diagnóstico por imagem , Estudos Retrospectivos
8.
Acta Derm Venereol ; 103: adv11662, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37219502
9.
Phytomedicine ; 116: 154872, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37209606

RESUMO

BACKGROUND: Drug-induced liver injury (DILI) is primarily caused by drugs or their metabolites. Acetaminophen (APAP) is an over-the-counter antipyretic analgesic that exhibits high hepatotoxicity when used for long-term or in overdoses. Taraxasterol is a five-ring triterpenoid compound extracted from traditional Chinese medicinal herb Taraxacum officinale. Our previous studies have demonstrated that taraxasterol exerts protective effects on alcoholic and immune liver injuries. However, the effect of taraxasterol on DILI remains unclear. HYPOTHESIS/PURPOSE: This study aimed to elucidate the effects and mechanisms of action of taraxasterol on APAP-induced liver injury using network pharmacology and in vitro and in vivo experiments. METHODS: Online databases of drug and disease targets were used to screen the targets of taraxasterol and DILI, and a protein-protein interaction network (PPI) was constructed. Core target genes were identified using the tool of Analyze of Cytoscape, gene ontology (GO) and Kyoto Encyclopaedia of Genes and Genomes (KEGG) enrichment analyses were performed. Oxidation, inflammation and apoptosis were evaluated to determine the effect of taraxasterol on APAP-stimulated liver damage in AML12 cells and mice. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blotting were used to explore the potential mechanisms of taraxasterol against DILI. RESULTS: Twenty-four intersection targets for taraxasterol and DILI were identified. Among them, 9 core targets were identified. GO and KEGG analysis showed that core targets are closely related to oxidative stress, apoptosis, and inflammatory response. The in vitro findings showed that taraxasterol alleviated mitochondrial damage in AML12 cells treated with APAP. The in vivo results revealed that taraxasterol alleviated pathological changes in the livers of mice treated with APAP and inhibited the activity of serum transaminases. Taraxasterol increased the activity of antioxidants, inhibited the production of peroxides, and reduced inflammatory response and apoptosis in vitro and in vivo. Taraxasterol promoted Nrf2 and HO-1 expression, suppressed JNK phosphorylation, and decreased the Bax/Bcl-2 ratio and caspase-3 expression in AML12 cells and mice. CONCLUSION: By integrating network pharmacology with in vitro and in vivo experiments, this study indicated that taraxasterol inhibits APAP-stimulated oxidative stress, inflammatory response and apoptosis in AML12 cells and mice by regulating the Nrf2/HO-1 pathway, JNK phosphorylation, and apoptosis-related protein expression. This study provides a new evidence for the use of taraxasterol as a hepatoprotective drug.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Triterpenos , Animais , Camundongos , Acetaminofen/efeitos adversos , Fator 2 Relacionado a NF-E2/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Farmacologia em Rede , Fígado , Triterpenos/farmacologia , Triterpenos/metabolismo , Estresse Oxidativo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo
10.
Front Physiol ; 14: 1125931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950300

RESUMO

The current guidelines for the ascending aortic aneurysm (AsAA) treatment recommend surgery mainly according to the maximum diameter assessment. This criterion has already proven to be often inefficient in identifying patients at high risk of aneurysm growth and rupture. In this study, we propose a method to compute a set of local shape features that, in addition to the maximum diameter D, are intended to improve the classification performances for the ascending aortic aneurysm growth risk assessment. Apart from D, these are the ratio DCR between D and the length of the ascending aorta centerline, the ratio EILR between the length of the external and the internal lines and the tortuosity T. 50 patients with two 3D acquisitions at least 6 months apart were segmented and the growth rate (GR) with the shape features related to the first exam computed. The correlation between them has been investigated. After, the dataset was divided into two classes according to the growth rate value. We used six different classifiers with input data exclusively from the first exam to predict the class to which each patient belonged. A first classification was performed using only D and a second with all the shape features together. The performances have been evaluated by computing accuracy, sensitivity, specificity, area under the receiver operating characteristic curve (AUROC) and positive (negative) likelihood ratio LHR+ (LHR-). A positive correlation was observed between growth rate and DCR (r = 0.511, p = 1.3e-4) and between GR and EILR (r = 0.472, p = 2.7e-4). Overall, the classifiers based on the four metrics outperformed the same ones based only on D. Among the diameter-based classifiers, k-nearest neighbours (KNN) reported the best accuracy (86%), sensitivity (55.6%), AUROC (0.74), LHR+ (7.62) and LHR- (0.48). Concerning the classifiers based on the four shape features, we obtained the best accuracy (94%), sensitivity (66.7%), specificity (100%), AUROC (0.94), LHR+ (+∞) and LHR- (0.33) with support vector machine (SVM). This demonstrates how automatic shape features detection combined with risk classification criteria could be crucial in planning the follow-up of patients with ascending aortic aneurysm and in predicting the possible dangerous progression of the disease.

11.
J Virol ; 97(3): e0160122, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36883812

RESUMO

Mayaro virus (MAYV) is a mosquito-transmitted alphavirus that causes often debilitating rheumatic disease in tropical Central and South America. There are currently no licensed vaccines or antiviral drugs available for MAYV disease. Here, we generated Mayaro virus-like particles (VLPs) using the scalable baculovirus-insect cell expression system. High-level secretion of MAYV VLPs in the culture fluid of Sf9 insect cells was achieved, and particles with a diameter of 64 to 70 nm were obtained after purification. We characterize a C57BL/6J adult wild-type mouse model of MAYV infection and disease and used this model to compare the immunogenicity of VLPs from insect cells with that of VLPs produced in mammalian cells. Mice received two intramuscular immunizations with 1 µg of nonadjuvanted MAYV VLPs. Potent neutralizing antibody responses were generated against the vaccine strain, BeH407, with comparable activity seen against a contemporary 2018 isolate from Brazil (BR-18), whereas neutralizing activity against chikungunya virus was marginal. Sequencing of BR-18 illustrated that this virus segregates with genotype D isolates, whereas MAYV BeH407 belongs to genotype L. The mammalian cell-derived VLPs induced higher mean neutralizing antibody titers than those produced in insect cells. Both VLP vaccines completely protected adult wild-type mice against viremia, myositis, tendonitis, and joint inflammation after MAYV challenge. IMPORTANCE Mayaro virus (MAYV) is associated with acute rheumatic disease that can be debilitating and can evolve into months of chronic arthralgia. MAYV is believed to have the potential to emerge as a tropical public health threat, especially if it develops the ability to be efficiently transmitted by urban mosquito vectors, such as Aedes aegypti and/or Aedes albopictus. Here, we describe a scalable virus-like particle vaccine against MAYV that induced neutralizing antibodies against a historical and a contemporary isolate of MAYV and protected mice against infection and disease, providing a potential new intervention for MAYV epidemic preparedness.


Assuntos
Aedes , Alphavirus , Vírus Chikungunya , Doenças Reumáticas , Vacinas de Partículas Semelhantes a Vírus , Animais , Camundongos , Vacinas de Partículas Semelhantes a Vírus/genética , Camundongos Endogâmicos C57BL , Alphavirus/genética , Brasil , Anticorpos Neutralizantes , Mamíferos
12.
Ecotoxicol Environ Saf ; 251: 114546, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36646010

RESUMO

Aflatoxin B1 (AFB1) is the most dangerous and abundant mycotoxin, which is toxic to almost all animals, and poultry is more sensitive to AFB1 toxicity. Ingesting AFB1-contaminated feed can cause significant liver damage and brings serious harm to poultry, which greatly restricts the development of the poultry industry. The present research was implemented to explore the intervention effect and its mechanism of taraxasterol on liver damage induced by AFB1 in broiler chickens. The liver damage model in broiler chickens was established by feeding 0.5 mg/kg AFB1 feed, and taraxasterol (25, 50 and 100 mg/kg BW, respectively) was given in the drinking water for 21 days. The growth performance, liver function, oxidative stress, apoptosis and autophagy were evaluated. The results showed that taraxasterol increased BW and reduced feed-to-gain ratio of broiler chickens induced by AFB1. Taraxasterol improved the levels of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyltransferase (GGT), total bilirubin (TBIL) and alkaline phosphatase (ALP), and attenuated hepatic histopathological changes induced by AFB1. Meantime, taraxasterol down-regulated cytochrome P450 (CYP450) enzyme system CYP1A1 and CYP2A6 mRNA expression, inhibited the overproduction of reactive oxygen species (ROS) and malondialdehyde (MDA), and enhanced the activities of antioxidant enzymes glutathione (GSH) and catalase (CAT) and the content of antioxidant superoxide dismutase (SOD) of the liver in broiler chickens induced by AFB1. Furthermore, taraxasterol up-regulated the mRNA and protein expression of hepatic nuclear factor E2 related factor 2 (Nrf2), heme oxygenase 1 (HO-1) and NAD(P)H: quinone oxidoreductase 1 (NQO1), and down-regulated the expression of hepatic kelch like ECH associated protein 1 (Keap1) induced by AFB1 in Keap1/Nrf2 signaling pathway. The ultrastructural observation and RT-qPCR results found that taraxasterol inhibited apoptosis of hepatocytes, up-regulated the expression of B-cell lymphoma-2 (Bcl-2) mRNA and down-regulated the expression of Bax and caspase3 mRNA. Further, taraxasterol restored the autophagy of hepatocytes and down-regulated the mRNA expression of phosphatidylinositol 3-kinase K (PI3K), protein kinase B (AKT) and mammalian target of rapamycin (mTOR) in AFB1-induced liver of broiler chickens. The above results indicate that taraxasterol alleviates liver damage induced by AFB1 in broiler chickens through regulation of Keap1/Nrf2 signaling pathway to exert its antioxidant effect, mitochondrial apoptosis pathway to improve anti-apoptotic ability and PI3K/AKT/mTOR pathway to restore autophagy.


Assuntos
Antioxidantes , Proteínas Proto-Oncogênicas c-akt , Animais , Antioxidantes/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Galinhas/metabolismo , Aflatoxina B1/toxicidade , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Estresse Oxidativo , Fígado , Apoptose , Glutationa/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , RNA Mensageiro/metabolismo , Autofagia , Mamíferos/metabolismo
13.
Vet Microbiol ; 277: 109622, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36543089

RESUMO

Interferon-induced transmembrane proteins (IFITMs) play an important role in the innate immune response triggered by viral infection. Transmissible gastroenteritis virus (TGEV) causes severe diarrhea, vomiting and dehydration in piglets, resulting in huge economic losses to the swine industry. In this study, we showed that IFITM3 inhibits the replication of TGEV and interferes with the binding of TGEV to PK15 cells. Moreover, the inhibitory effect of IFITM3 on TGEV circumvents the upregulation of inflammatory cytokines. Subsequently, we found that the M22A mutant loses part of the antiviral effect of IFITM3 on TGEV; in contrast, the K24A mutant enhances the antiviral effect of IFITM3. Notably, our data shows a synergistic effect between IFITM3 and CQ, which further amplifies the antiviral effect against TGEV.


Assuntos
Gastroenterite Suína Transmissível , Doenças dos Suínos , Vírus da Gastroenterite Transmissível , Animais , Suínos , Vírus da Gastroenterite Transmissível/genética , Interferons , Antivirais , Imunidade Inata
14.
Sci Total Environ ; 859(Pt 1): 160163, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36395835

RESUMO

Warmer climatic conditions have been associated with fewer COVID-19 cases. Herein we infected K18-hACE2 mice housed at the standard animal house temperature of ∼22 °C, or at ∼31 °C, which is considered to be thermoneutral for mice. On day 2 post infection, RNA-Seq analyses showed no significant differential gene expression lung in lungs of mice housed at the two temperatures, with almost identical viral loads and type I interferon responses. There was also no significant difference in viral loads in lungs on day 5, but RNA-Seq and histology analyses showed clearly elevated inflammatory signatures and infiltrates. Thermoneutrality thus promoted lung inflammation. On day 2 post infection mice housed at 31 °C showed reduced viral loads in nasal turbinates, consistent with increased mucociliary clearance at the warmer ambient temperature. These mice also had reduced virus levels in the brain, and an ensuing amelioration of weight loss and a delay in mortality. Warmer air temperatures may thus reduce infection of the upper respiratory track and the olfactory epithelium, resulting in reduced brain infection. Potential relevance for anosmia and neurological sequelae in COVID-19 patients is discussed.


Assuntos
COVID-19 , Pneumonia , Camundongos , Animais , COVID-19/patologia , Enzima de Conversão de Angiotensina 2/metabolismo , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Pulmão/patologia , Encéfalo/metabolismo
15.
Sci Adv ; 8(48): eadd8095, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36449607

RESUMO

All flaviviruses, including Zika virus, produce noncoding subgenomic flaviviral RNA (sfRNA), which plays an important role in viral pathogenesis. However, the exact mechanism of how sfRNA enables viral evasion of antiviral response is not well defined. Here, we show that sfRNA is required for transplacental virus dissemination in pregnant mice and subsequent fetal brain infection. We also show that sfRNA promotes apoptosis of neural progenitor cells in human brain organoids, leading to their disintegration. In infected human placental cells, sfRNA inhibits multiple antiviral pathways and promotes apoptosis, with signal transducer and activator of transcription 1 (STAT1) identified as a key shared factor. We further show that the production of sfRNA leads to reduced phosphorylation and nuclear translocation of STAT1 via a mechanism that involves sfRNA binding to and stabilizing viral protein NS5. Our results suggest the cooperation between viral noncoding RNA and a viral protein as a novel strategy for counteracting antiviral responses.


Assuntos
Infecção por Zika virus , Zika virus , Gravidez , Humanos , Feminino , Animais , Camundongos , Fosforilação , Proteínas Virais , Placenta , RNA Viral/genética , Antivirais , RNA não Traduzido/genética , Infecção por Zika virus/genética , Fator de Transcrição STAT1/genética
16.
PLoS Pathog ; 18(9): e1010867, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36155667

RESUMO

How well mouse models recapitulate the transcriptional profiles seen in humans remains debatable, with both conservation and diversity identified in various settings. Herein we use RNA-Seq data and bioinformatics approaches to analyze the transcriptional responses in SARS-CoV-2 infected lungs, comparing 4 human studies with the widely used K18-hACE2 mouse model, a model where hACE2 is expressed from the mouse ACE2 promoter, and a model that uses a mouse adapted virus and wild-type mice. Overlap of single copy orthologue differentially expressed genes (scoDEGs) between human and mouse studies was generally poor (≈15-35%). Rather than being associated with batch, sample treatment, viral load, lung damage or mouse model, the poor overlaps were primarily due to scoDEG expression differences between species. Importantly, analyses of immune signatures and inflammatory pathways illustrated highly significant concordances between species. As immunity and immunopathology are the focus of most studies, these mouse models can thus be viewed as representative and relevant models of COVID-19.


Assuntos
COVID-19 , Enzima de Conversão de Angiotensina 2/genética , Animais , COVID-19/genética , Modelos Animais de Doenças , Expressão Gênica , Humanos , Pulmão , Camundongos , Camundongos Transgênicos , Peptidil Dipeptidase A/metabolismo , SARS-CoV-2/genética
17.
Virus Evol ; 8(2): veac063, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35919871

RESUMO

Human ACE2 Human angiotensin converting enzyme 2 (hACE2) is the key cell attachment and entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with the original SARS-CoV-2 isolates unable to use mouse ACE2 (mACE2). Herein we describe the emergence of a SARS-CoV-2 strain capable of ACE2-independent infection and the evolution of mouse-adapted (MA) SARS-CoV-2 by in vitro serial passaging of virus in co-cultures of cell lines expressing hACE2 and mACE2. MA viruses evolved with up to five amino acid changes in the spike protein, all of which have been seen in human isolates. MA viruses replicated to high titers in C57BL/6J mouse lungs and nasal turbinates and caused characteristic lung histopathology. One MA virus also evolved to replicate efficiently in several ACE2-negative cell lines across several species, including clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) ACE2 knockout cells. An E484D substitution is likely involved in ACE2-independent entry and has appeared in only ≈0.003 per cent of human isolates globally, suggesting that it provided no significant selection advantage in humans. ACE2-independent entry reveals a SARS-CoV-2 infection mechanism that has potential implications for disease pathogenesis, evolution, tropism, and perhaps also intervention development.

19.
Theranostics ; 12(6): 2811-2832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35401827

RESUMO

Rational: The mutating SARS-CoV-2 potentially impairs the efficacy of current vaccines or antibody-based treatments. Broad-spectrum and rapid anti-virus methods feasible for regular epidemic prevention against COVID-19 or alike are urgently called for. Methods: Using SARS-CoV-2 virus and bioengineered pseudoviruses carrying ACE2-binding spike protein domains, we examined the efficacy of cold atmospheric plasma (CAP) on virus entry prevention. Results: We found that CAP could effectively inhibit the entry of virus into cells. Direct CAP or CAP-activated medium (PAM) triggered rapid internalization and nuclear translocation of the virus receptor, ACE2, which began to return after 5 hours and was fully recovered by 12 hours. This was seen in vitro with both VERO-E6 cells and human mammary epithelial MCF10A cells, and in vivo. Hydroxyl radical (·OH) and species derived from its interactions with other species were found to be the most effective CAP components for triggering ACE2 nucleus translocation. The ERα/STAT3(Tyr705) and EGFR(Tyr1068/1086)/STAT3(Tyr705) axes were found to interact and collectively mediate the effects on ACE2 localization and expression. Conclusions: Our data support the use of PAM in helping control SARS-CoV-2 if developed into products for nose/mouth spray; an approach extendable to other viruses utilizing ACE2 for host entry.


Assuntos
COVID-19 , Gases em Plasma , Enzima de Conversão de Angiotensina 2 , COVID-19/prevenção & controle , Humanos , Gases em Plasma/farmacologia , Ligação Proteica , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
20.
Elife ; 112022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119362

RESUMO

Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.


Assuntos
Granzimas/genética , Camundongos Knockout/genética , NADP Trans-Hidrogenases/genética , Animais , Artrite/virologia , Febre de Chikungunya/genética , Vírus Chikungunya , Modelos Animais de Doenças , Patrimônio Genético , Genótipo , Granzimas/metabolismo , Camundongos Endogâmicos C57BL , NADP Trans-Hidrogenases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...