Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 49(19): 5451-5454, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352979

RESUMO

Three-micrometer mid-infrared (MIR) femtosecond pulse sources with a high repetition rate (HRR) have potential applications in a number of fields such as biological imaging, optical frequency combs, and gas detection. In this paper, by optimizing the fiber length and the cavity structure, we demonstrated a highly stable, self-starting mode-locked fluoride fiber laser (MLFFL) with a fundamental repetition rate of ∼165 MHz and a signal-to-noise ratio (SNR) of 90 dB. As far as we know, this stands as the highest fundamental repetition rate ever acquired directly from an ultrafast MLFFL in the >2.5 µm MIR region. Stable 352-fs pulses at 2795 nm with an average output power of 392 mW and a low integrated relative intensity noise (RIN) of 0.018% [10 Hz, 10 MHz] were generated. The root mean square (RMS) power fluctuation is 0.17% over 2 h, which indicates excellent oscillator stability. This high-performance laser offers a practicable scheme both for scaling the repetition frequency in MIR MLFFLs and high-precision ultrafast applications at longer wavelengths.

2.
Small ; : e2402668, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39235584

RESUMO

Photodetectors are one of the most critical components for future optoelectronic systems and it undergoes significant advancements to meet the growing demands of diverse applications spanning the spectrum from ultraviolet (UV) to terahertz (THz). 2D materials are very attractive for photodetector applications because of their distinct optical and electrical properties. The atomic-thin structure, high carrier mobility, low van der Waals (vdWs) interaction between layers, relatively narrower bandgap engineered through engineering, and significant absorption coefficient significantly benefit the chip-scale production and integration of 2D materials-based photodetectors. The extremely sensitive detection at ambient temperature with ultra-fast capabilities is made possible with the adaptability of 2D materials. Here, the recent progress of photodetectors based on 2D materials, covering the spectrum from UV to THz is reported. In this report, the interaction of light with 2D materials is first deliberated on in terms of optical physics. Then, various mechanisms on which detectors work, important performance parameters, important and fruitful fabrication methods, fundamental optical properties of 2D materials, various types of 2D materials-based detectors, different strategies to improve performance, and important applications of photodetectors are discussed.

3.
Opt Lett ; 49(5): 1117-1120, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38426952

RESUMO

We report a tunable spatiotemporally mode-locked large-mode-area Er:ZBLAN fiber laser based on the nonlinear polarization rotation technique. A diffraction grating is introduced to select the operating wavelength. Under the spectral and spatial filtering effects provided by the grating and spatial coupling respectively, stable ps-level spatiotemporally mode-locked pulses around 2.8 µm with a repetition rate of 43.4 MHz are generated. Through a careful adjustment of the grating, a broad wavelength tuning range from 2747 to 2797 nm is realized. To the best of our knowledge, this is the first wavelength-tunable spatiotemporally mode-locked fiber laser in the mid-infrared region.

4.
Opt Lett ; 49(1): 133-136, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38134170

RESUMO

We report a self-starting mode-locked all-polarization-maintaining (PM) holmium (Ho)-doped fiber oscillator operating at ∼2.08 µm based on nonlinear polarization evolution (NPE). The oscillator is configured as a linear cavity structure with two output ports exhibiting completely different pulse characteristics. One output port of the oscillator can deliver a stable, clean soliton-like pulse with a pulse duration of 439 fs and an average power of 7.5 mW at a fundamental repetition rate of 61.67 MHz. In contrast, the other port delivers a low-quality pulse with a complex structure. Numerical simulations reveal that the pulse difference between the two ports is mainly caused by the nonlinear optical interactions between the slow-axis and fast-axis modes in the PM fibers. Furthermore, the obtained clean pulses show significant improvements in relative intensity noise and power stability compared to complex pulses. Our study can help researchers obtain high-quality, stable pulses from PM-NPE mode-locked fiber oscillators.

5.
Sci Rep ; 13(1): 20289, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37985894

RESUMO

Gamma radiation is progressively emerging as an effective method to enhance the sterilization efficiency of medical plastics including Polyvinyl chloride (PVC). The parameters of the radiation facility will affect the efficiency of radiation sterilization. To investigate these effects, we simulate the gamma radiation sterilization performance of PVC material sample using Monte Carlo Method. The simulation results indicated that compared with the sterilization time of 20-90 min from high-temperature steam sterilization of medical waste, by optimizing the parameters of the model radiation facility, the radiation sterilization time can be reduced to 6.61 min. The optimized model facility parameters are as follows: the gamma photon energy is 1.25 MeV, the model space is 300 × 300 × 300 cm3, the reflective layer material is concrete and its thickness is 8 cm, the PVC sample layer area is 100 × 100 cm2, the distance between the radiation source and the PVC sample layer is 150 cm, the energy deposition in the bottom layer of the PVC sample layer is 1.31315 × 10-6 MeV/g. This study offers a potentially feasible way for PVC sterilization, while also providing a crucial reference for the further promotion and application of radiation sterilization technology.

6.
Opt Lett ; 48(10): 2768-2771, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37186761

RESUMO

As the critical device of microwave photonics and optical communication, the low-loss and high-efficiency optical phase shifter has attracted intense attention in photonic integrated circuits. However, most of their applications are restricted to a particular band. Little is known about the characteristics of broadband. In this paper, an SiN-MoS2 integrated broadband racetrack phase shifter is demonstrated. The coupling region and the structure of the racetrack resonator are elaborately designed to improve the coupling efficiency at each resonance wavelength. The ionic liquid is introduced to form a capacitor structure. Then, the effective index of the hybrid waveguide can be efficiently tuned by adjusting the bias voltage. We achieve a phase shifter with a tunable range covering all the WDM bands and even up to 1900 nm. The highest phase tuning efficiency is measured to be 72.75 pm/V at 1860 nm, and the corresponding half-wave-voltage-length product is calculated as 0.0608 V·cm.

7.
Opt Lett ; 48(7): 1790-1793, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221767

RESUMO

We report an all-fiber 2.8-µm ultra-short pulse master oscillator power amplifier (MOPA) system seeded by a soliton self-frequency shift from a mode-locked thulium-doped fiber laser. This all-fiber laser source delivers 2.8-µm pulses with an average power of 3.42 W, a pulse width of 115 fs, and a pulse energy of 45.4 nJ. We demonstrate, to the best of our knowledge, the first femtosecond watt-level all-fiber 2.8-µm laser system. A 2.8-µm pulse seed was obtained via the soliton self-frequency shift of 2-µm ultra-short pulses in a cascaded silica and passive fluoride fiber. A novel, to the best of our knowledge, high-efficiency and compact home-made end-pump silica-fluoride fiber combiner was fabricated and used in this MOPA system. Nonlinear amplification of the 2.8-µm pulse was realized, and soliton self-compression was observed accompanied by spectral broadening.

8.
Opt Lett ; 48(7): 1830-1833, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221777

RESUMO

We report a hybrid mode-locked fiber laser at 2.8 µm based on a large-mode-area Er:ZBLAN fiber. Reliable self-starting mode-locking is achieved via the combination of nonlinear polarization rotation and a semiconductor saturable absorber. Stable mode-locked pulses with a pulse energy of 9.4 nJ and a pulse duration of 325 fs are generated. To the best of our knowledge, this is the highest pulse energy directly generated from a femtosecond mode-locked fluoride fiber laser (MLFFL) to date. The measured M2 factors are below 1.13, indicating a nearly diffraction-limited beam quality. Demonstration of this laser provides a feasible scheme for the pulse energy scaling of mid-infrared MLFFLs. Moreover, a peculiar multi-soliton mode-locking state is also observed, in which the time interval between the solitons varies irregularly from tens of picoseconds to several nanoseconds.

9.
Opt Express ; 31(9): 14842-14850, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157339

RESUMO

We experimentally investigate the generation of h-shaped pulse in an all-polarization-maintaining (PM) and all-normal-dispersion (ANDi) mode-locked fiber laser. The generated pulse is demonstrated to be a unitary pulse, instead of a noise-like pulse (NLP). Furthermore, by employing an external filtering system, the obtained h-shaped pulse can be resolved into rectangular-shaped pulses, chair-like pulses, and Gaussian pulses. The authentic AC traces with a double-scale structure of unitary h-shaped pulses and chair-like pulses are observed on the autocorrelator. The chirp of h-shaped pulses is also proved similar to that of DSR pulses. To the best of our knowledge, this is the first time that the existence of unitary h-shaped pulse generation has been confirmed. Moreover, our experimental results reveal the close relationship of formation mechanisms of dissipative soliton resonance (DSR) pulses, h-shaped pulses, and chair-like pulses, which helps to unify the essences of such "DSR-like" pulses.

10.
Opt Express ; 31(9): 15170-15178, 2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37157364

RESUMO

An all-polarization-maintaining (PM) mode-locked fiber laser based upon nonlinear polarization evolution (NPE) that operates around 976 nm is presented. The NPE-based mode-locking is realized using a special section of the laser which comprises three pieces of PM fibers with specific deviation angles between the polarization axes and a polarization-dependent isolator. By optimizing the NPE section and adjusting the pump power, dissipative soliton (DS) pulses with a pulse duration of ∼6 ps, a spectral bandwidth of >10 nm and a maximum pulse energy of 0.54 nJ are generated. Self-starting, steady mode-locking operation is achievable within a pump power range of ∼2 W. Moreover, by incorporating a segment of passive fiber into the appropriate location in the laser resonator, an intermediate regime between stable single-pulse mode-locking and noise-like pulse (NLP) is realized in the laser. Our work expands the dimension of the research on the mode-locked Yb-doped fiber laser operating around 976 nm.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA