Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 185: 1189-1196, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28772358

RESUMO

Mine tailings often contain significant amounts of metals and sulfide, many traditional operations used to minerals was not as good as those currently available. This study investigated metals removal from lead-zinc mine tailings using bioleaching and followed by sulfide precipitation. Metals were dissolved from the tailings by the bacteria in a bioleaching reactor. During a 10% pulp density bioleaching experiment, approximately 0.82% Pb, 97.38% Zn, and 71.37% Fe were extracted after 50 days. With the pulp density of 10% and 20%, the dissolution of metals followed shrinking core kinetic model. Metals (Pb, Zn, and Fe) present in the pregnant bioleaching leachate. Metals were next precipitated as a sulfide phase using sodium sulfide (Na2S). Metal precipitations were selectively and quantitatively produced from the bioleaching leachate by adding Na2S. More than 99% of the zinc and 75% of the iron was precipitated using 25 g/L Na2S in the bioleaching leachate. The results in the study were to provide useful information for recovering or removing metals from lead-zinc mine tailings.


Assuntos
Recuperação e Remediação Ambiental/métodos , Metais/análise , Ferro , Chumbo/análise , Metais/química , Minerais , Mineração , Sulfetos , Zinco/análise
2.
Chemosphere ; 168: 1115-1125, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27884516

RESUMO

During the process of bioleaching, lead (Pb) recovery is low. This low recovery is caused by a problem with the bioleaching technique. This research investigated the bioleaching combination of bioleaching with brine leaching to remove heavy metals from lead-zinc mine tailings. The impact of different parameters were studied, including the effects of initial pH (1.5-3.0) and solid concentration (5-20%) for bioleaching, and the effects of sodium chloride (NaCl) concentration (10-200 g/L) and temperature (25 and 50 °C) for brine leaching. Complementary characterization experiments (Sequential extraction, X-ray diffractometer (XRD), scanning electronic microscope (SEM)) were also conducted to explore the transformation of tailings during the leaching process. The results showed that bioleaching efficiency was significantly influenced by initial pH and solid concentration. Approximately 85.45% of iron (Fe), 4.12% of Pb, and 97.85% of zinc (Zn) were recovered through bioleaching in optimum conditions. Increasing the brine concentration and temperature promoted lead recovery. Lead was recovered from the bioleaching residues at a rate of 94.70% at 25 °C and at a rate of 99.46% at 50 °C when the NaCl concentration was 150 g/L. The study showed that bioleaching significantly changed the speciation of heavy metals and the formation and surface morphology of tailings. The metals were mainly bound in stable fractions after bioleaching.


Assuntos
Chumbo/metabolismo , Metais Pesados/metabolismo , Sais/metabolismo , Poluentes Químicos da Água/metabolismo , Zinco/metabolismo , Acidithiobacillus thiooxidans/metabolismo , Chumbo/análise , Mineração , Oxirredução , Cloreto de Sódio/química , Zinco/análise
3.
Environ Sci Pollut Res Int ; 23(19): 19696-706, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27406222

RESUMO

A new effective multi-dithiocarbamate heavy metal precipitant, disodium N,N-bis-(dithiocarboxy) ethanediamine (BDE), was synthesized by mixing ethanediamine with carbon disulfide under alkaline conditions, and it was utilized for removing trace ethylenediaminetetraacetic acid copper (II) (EDTA-Cu) from wastewater. Its structure was confirmed by ultraviolet spectra, Fourier transform infrared spectra, scanning electron microscopy, thermogravimetric analysis, and elemental analysis. The removal performance of EDTA-Cu by BDE was evaluated according to BDE dosage, initial concentration, pH, and reaction time through single-factor experiments. With the optimized conditions of a pH range of 3-9, dosage ratio of BDE/Cu of 1:1, PAM dosage of 1 mg/L, and reaction time of 4 min, the removal efficiency of Cu(2+) was more than 98 % from simulated wastewater containing EDTA-Cu with initial concentrations of 5-100 mg/L. Treatment of actual EDTA-Cu wastewater showed that BDE performed superior effectiveness, and the average residential concentration of Cu(2+) was 0.115 mg/L. Besides, the stability of chelated precipitate and the reaction mechanism of BDE and EDTA-Cu were also introduced. The toxicity characteristic leaching procedure (TCLP) and semi-dynamic leaching test (SDLT) indicated that the chelated precipitate was non-hazardous and stable in weak acid and alkaline conditions. The BDE reacts with EDTA-Cu at a stoichiometric ratio, and the removal of Cu(2+) was predominantly achieved through the replacement reaction of BDE and EDTA-Cu.


Assuntos
Quelantes/química , Cobre/química , Ácido Edético/química , Tiocarbamatos/química , Poluentes Químicos da Água/química , Cobre/análise , Metais Pesados/análise , Águas Residuárias/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA