Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.044
Filtrar
1.
Virulence ; 15(1): 2350775, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38736041

RESUMO

OBJECTIVES: The translocation of intestinal flora has been linked to the colonization of diverse and heavy lower respiratory flora in patients with septic ARDS, and is considered a critical prognostic factor for patients. METHODS: On the first and third days of ICU admission, BALF, throat swab, and anal swab were collected, resulting in a total of 288 samples. These samples were analyzed using 16S rRNA analysis and the traceability analysis of new generation technology. RESULTS: On the first day, among the top five microbiota species in abundance, four species were found to be identical in BALF and throat samples. Similarly, on the third day, three microbiota species were found to be identical in abundance in both BALF and throat samples. On the first day, 85.16% of microorganisms originated from the throat, 5.79% from the intestines, and 9.05% were unknown. On the third day, 83.52% of microorganisms came from the throat, 4.67% from the intestines, and 11.81% were unknown. Additionally, when regrouping the 46 patients, the results revealed a significant predominance of throat microorganisms in BALF on both the first and third day. Furthermore, as the disease progressed, the proportion of intestinal flora in BALF increased in patients with enterogenic ARDS. CONCLUSIONS: In patients with septic ARDS, the main source of lung microbiota is primarily from the throat. Furthermore, the dynamic trend of the microbiota on the first and third day is essentially consistent.It is important to note that the origin of the intestinal flora does not exclude the possibility of its origin from the throat.


Assuntos
Bactérias , Líquido da Lavagem Broncoalveolar , Microbiota , Faringe , RNA Ribossômico 16S , Síndrome do Desconforto Respiratório , Sepse , Humanos , Masculino , Feminino , Síndrome do Desconforto Respiratório/microbiologia , Pessoa de Meia-Idade , Faringe/microbiologia , RNA Ribossômico 16S/genética , Líquido da Lavagem Broncoalveolar/microbiologia , Idoso , Sepse/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Alvéolos Pulmonares/microbiologia , Adulto , Unidades de Terapia Intensiva , Microbioma Gastrointestinal
2.
Medicine (Baltimore) ; 103(18): e37933, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701300

RESUMO

BACKGROUND: Sepsis-induced myopathy (SIM) a complication of sepsis that results in prolonged mechanical ventilation, long-term functional disability, and increased patient mortality. This study was performed to identify potential key oxidative stress-related genes (OS-genes) as biomarkers for the diagnosis of SIM using bioinformatics. METHODS: The GSE13205 was obtained from the Gene Expression Omnibus (GEO) database, including 13 SIM samples and 8 healthy samples, and the differentially expressed genes (DEGs) were identified by limma package in R language. Simultaneously, we searched for the genes related to oxidative stress in the Gene Ontology (GO) database. The intersection of the genes selected from the GO database and the genes from the GSE13205 was considered as OS-genes of SIM, where the differential genes were regarded as OS-DEGs. OS-DEGs were analyzed using GO enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and protein-protein interaction (PPI) networks. Hub genes in OS-DEGs were selected based on degree, and diagnostic genes were further screened by gene expression and receiver operating characteristic (ROC) curve. Finally, a miRNA-gene network of diagnostic genes was constructed. RESULTS: A total of 1089 DEGs were screened from the GSE13205, and 453 OS-genes were identified from the GO database. The overlapping DEGs and OS-genes constituted 25 OS-DEGs, including 15 significantly upregulated and 10 significantly downregulated genes. The top 10 hub genes, including CD36, GPX3, NQO1, GSR, TP53, IDH1, BCL2, HMOX1, JAK2, and FOXO1, were screened. Furthermore, 5 diagnostic genes were identified: CD36, GPX3, NQO1, GSR, and TP53. The ROC analysis showed that the respective area under the curves (AUCs) of CD36, GPX3, NQO1, GSR, and TP53 were 0.990, 0.981, 0.971, 0.971, and 0.971, which meant these genes had very high diagnostic values of SIM. Finally, based on these 5 diagnostic genes, we found that miR-124-3p and miR-16-5p may be potential targets for the treatment of SIM. CONCLUSIONS: The results of this study suggest that OS-genes might play an important role in SIM. CD36, GPX3, NQO1, GSR, and TP53 have potential as specific biomarkers for the diagnosis of SIM.


Assuntos
Doenças Musculares , Estresse Oxidativo , Sepse , Humanos , Estresse Oxidativo/genética , Sepse/genética , Doenças Musculares/genética , Biologia Computacional , Mapas de Interação de Proteínas/genética , MicroRNAs/genética , Curva ROC , Biomarcadores/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Ontologia Genética , Bases de Dados Genéticas
3.
Transplantation ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725107

RESUMO

BACKGROUND: Hepatic ischemia/reperfusion (I/R) injury is a major cause of complications in clinical liver surgery. AXL receptor tyrosine kinase (AXL) is a member of the TAM receptor tyrosine kinase family (TYRO3, AXL, and MERTK). Our previous study has shown that AXL expression was markedly upregulated in liver transplantation patients. However, the underlying mechanism of AXL in hepatic I/R injury remains unclear. METHODS: A mouse liver warm I/R model and a primary hepatocyte hypoxia/reoxygenation model were established to investigate the role of AXL activation and ferroptosis in hepatic I/R injury by pretreating with recombinant mouse growth arrest-specific protein 6 (AXL activator) or R428 (AXL inhibitor). Moreover, we used LY294002 (phosphatidylinositol 3-kinase [PI3K] inhibitor) to evaluate the relationship between the PI3K/AKT (the Ser and Thr kinase AKT) pathway and ferroptosis in hepatic I/R injury. RESULTS: Hepatic I/R injury decreased phosphorylation AXL expression and enhanced ferroptosis in liver transplantation patients and hepatic I/R-subjected mice. AXL activation attenuated lipid peroxidation and ferroptosis in hepatic I/R injury in vivo and in vitro. Inhibition of AXL activation exacerbated liver pathological damage and liver dysfunction, as well as iron accumulation and lipid peroxidation in hepatic I/R injury. Mechanistically, activated growth arrest-specific protein 6/AXL and its downstream PI3K/AKT signaling pathway inhibited ferroptosis during hepatic I/R injury. CONCLUSIONS: AXL activation protects against hepatic I/R injury by preventing ferroptosis through the PI3K/AKT pathway. This study is the first investigation on the AXL receptor and ferroptosis, and activating AXL to mitigate ferroptosis may be an innovative therapeutic strategy to combat hepatic I/R injury.

4.
Langmuir ; 40(19): 10228-10239, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38693709

RESUMO

Incomplete combustion of Al in solid propellants can be effectively resolved by coating of an oxidizer at the microscale. In this paper, Al@CL-20 composites with polydopamine as the interfacial layer were prepared using this strategy. The structure, heat of reaction, thermal decomposition properties, and combustion performances of these composites under the effects of graphene oxide (GO) and graphene-based carbohydrazide complexes (GO-CHZ-M, M = Co2+, Ni2+) have been comprehensively investigated. The experimental results show that the heat of reaction of Al@CL-20 is 6482 J g-1, which is 561 J g-1 higher than that of the corresponding mechanical mixture. The presence of GO-CHZ-Co can further increase the heat of reaction of Al@CL-20 to 6729 J g-1 with a decreased activation energy by about 54.8%. Under the synergistic effect of interfacial control and GO-CHZ-M, the ignition delay time of Al@CL-20-Co decreases from 5.1 to 4.2 ms. Besides, the D50 of the combustion condensed products (CCPs) decreased from 5.62 to 4.33 µm, indicating the combustion efficiency of Al is greatly improved.

5.
Plant Physiol ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758114

RESUMO

Lespedeza potaninii, a xerophytic subshrub belonging to the legume family, is native to the Tengger Desert and is highly adapted to drought. It has important ecological value due to its drought adaptability, but the underlying molecular mechanisms remain largely unknown. Here, we report a 1.24 Gb chromosome-scale assembly of the L. potaninii genome (contig N50=15.75 Mb). Our results indicate that L. potaninii underwent an allopolyploid event with two subgenomes, A and B, presenting asymmetric evolution and B subgenome dominance. We estimate that the two diploid progenitors of L. potaninii diverged around 3.6 MYA and merged around 1.0 MYA. We revealed that the expansion of hub genes associated with drought responses, such as the binding partner 1 of accelerated cell death 11 (ACD11) (BPA1), facilitated environmental adaptations of L. potaninii to desert habitats. We found a novel function of the BPA1 family in abiotic stress tolerance in addition to the known role in regulating the plant immune response, which could improve drought tolerance by positively regulating reactive oxygen species homeostasis in plants. We revealed that bZIP transcription factors could bind to the BPA1 promoter and activate its transcription. Our work fills the genomic data gap in the Lespedeza genus and the tribe Desmodieae, which should provide both theoretical support in the study of drought tolerance and in the molecular breeding of legume crops.

6.
Hum Cell ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743204

RESUMO

Mesenchymal stem/stromal cells (MSCs), originating from the mesoderm, represent a multifunctional stem cell population capable of differentiating into diverse cell types and exhibiting a wide range of biological functions. Despite more than half a century of research, MSCs continue to be among the most extensively studied cell types in clinical research projects globally. However, their significant heterogeneity and phenotypic instability have significantly hindered their exploration and application. Single-cell sequencing technology emerges as a powerful tool to address these challenges, offering precise dissection of complex cellular samples. It uncovers the genetic structure and gene expression status of individual contained cells on a massive scale and reveals the heterogeneity among these cells. It links the molecular characteristics of MSCs with their clinical applications, contributing to the advancement of regenerative medicine. With the development and cost reduction of single-cell analysis techniques, sequencing technology is now widely applied in fundamental research and clinical trials. This study aimed to review the application of single-cell sequencing in MSC research and assess its prospects.

7.
Acta Trop ; : 107268, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38782109

RESUMO

Borrelia burgdorferi sensu lato (Bb) are a complex of bacteria genospecies that can cause Lyme disease (LD) in humans after the bite of an infected Ixodes spp. vector tick. In Canada, incidence of LD is increasing in part due to the rapid geographic expansion of Ixodes scapularis across the southcentral and eastern provinces. To better understand temporal and spatial (provincial) prevalence of Bb infection of I. scapularis and how tick surveillance is utilized in Canada to assess LD risk, a literature review was conducted. Tick surveillance studies published between January 1975 to November 2023, that measured the prevalence of Bb in I. scapularis via "passive surveillance" from the public citizenry or "active surveillance" by drag or flag sampling of host-seeking ticks in Canada were included for review. Meta-analyses were conducted via random effects modeling. Forty-seven articles, yielding 26 passive and 28 active surveillance studies, met inclusion criteria. Mean durations of collection for I. scapularis were 2.1 years in active surveillance studies (1999-2020) and 5.5 years by passive surveillance studies (1990-2020). Collectively, data were extracted on 99,528 I. scapularis nymphs and adults collected between 1990-2020 across nine provinces, including Newfoundland & Labrador (33 ticks) and Alberta (208 ticks). More studies were conducted in Ontario (36) than any other province. Across nine provinces, the prevalence of Bb infection in I. scapularis collected by passive surveillance was 14.6% with the highest prevalence in Nova Scotia at 20.5% (minimum studies >1). Among host-seeking I. scapularis collected via active surveillance, Bb infection prevalence was 10.5% in nymphs, 31.9% in adults, and 23.8% across both life stages. Host-seeking I. scapularis nymphs and adults from Ontario had the highest Bb prevalence at 13.6% and 34.8%, respectively. Between 2007-2019, Bb infection prevalence in host-seeking I. scapularis was positively associated over time (p<0.001) which is concurrent with a ∼25-fold increase in the number of annually reported LD cases in Canada over the same period. The prevalence of Bb-infection in I. scapularis has rapidly increased over three decades as reported by tick surveillance studies in Canada which coincides with increasing human incidence for LD. The wide-ranging distribution and variable prevalence of Bb-infected I. scapularis ticks across provinces demonstrates the growing need for long-term standardized tick surveillance to monitor the changing trends in I. scapularis populations and best define LD risk areas in Canada.

8.
Clin Transl Oncol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789890

RESUMO

BACKGROUND: Whole-brain radiotherapy (WBRT) is a standard and effective approach for brain metastases, but it is linked to neurocognitive complications, specifically issues related to the hippocampus. Innovative strategies are being explored to enhance outcomes. However, a consensus is yet to be reached in this field. Our aim is to investigate the efficacy and safety of WBRT combined with simultaneous integrated boost (SIB), memantine, and hippocampal avoidance (HA) techniques in treatment of brain metastases. METHODS: In this systematic review and meta-analysis, we comprehensively searched PubMed, MEDLINE, Embase, and Cochrane for studies reporting the efficacy and toxicity of WBRT-based combination therapies from inception to September 19, 2023. Data were pooled using random-effects models. Results were reported as risk ratios (RRs) and risk differences (RDs) for dichotomous outcomes, along with their 95% confidence intervals (CIs). Heterogeneity was evaluated using the I2 statistic. RESULTS: Among 2175 articles, 29 studies involving 3460 patients were included. The meta-analysis revealed that compared to WBRT alone, combination therapies significantly mitigated neurocognitive function decline (RD = -0.09, 95% CI [-0.18-0.01]; P = 0.03) and intracranial control failure (RR = 0.86, 95% CI [0.52-1.44]; P = 0.02), without increasing the risk of hippocampal recurrence or high-grade toxicities. Notably, HA-WBRT + SIB/memantine demonstrated improved neurocognitive outcomes and survival benefits. CONCLUSION: WBRT-based combination therapies demonstrate improved efficacy and comparable safety to WBRT alone, with specific emphasis on the effectiveness of HA-WBRT + Memantine and HA-WBRT + SIB in optimizing therapeutic outcomes for brain metastases.

9.
Metabolites ; 14(5)2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38786749

RESUMO

Transcriptomics and metabolomics offer distinct advantages in investigating the differentially expressed genes and cellular entities that have the greatest influence on end-phenotype, making them crucial techniques for studying plant quality and environmental responses. While numerous relevant articles have been published, a comprehensive summary is currently lacking. This review aimed to understand the global and longitudinal research trends of transcriptomics and metabolomics in plant quality and environmental response (TMPQE). Utilizing bibliometric methods, we presented a comprehensive science mapping of the social structure, conceptual framework, and intellectual foundation of TMPQE. We uncovered that TMPQE research has been categorized into three distinct stages since 2020. A citation analysis of the 29 most cited articles, coupled with a content analysis of recent works (2020-2023), highlight five potential research streams in plant quality and environmental responses: (1) biosynthetic pathways, (2) abiotic stress, (3) biotic stress, (4) development and ripening, and (5) methodologies and tools. Current trends and future directions are shaped by technological advancements, species diversity, evolving research themes, and an environmental ecology focus. Overall, this review provides a novel and comprehensive perspective to understand the longitudinal trend on TMPQE.

10.
BMC Oral Health ; 24(1): 600, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38778313

RESUMO

OBJECTIVES: To assess the accuracy of implant placement in models and satisfaction in dynamic navigation assisted postgraduate dental students training. METHODS: Postgraduate dental students who had at least one year of dental clinical practice with no experience in dental implant surgeries were included. Students were instructed to make treatment plans in the dynamic navigation system. Each student placed two maxillary right incisors, using freehand approach at first and then under dynamic navigation. The implant position was compared with treatment plan. Factors influencing the accuracy of implants placed under dynamic navigation were analyzed. Student acceptance towards the training and use of dynamic navigation was recorded using a questionnaire. RESULTS: A total of 21 students placed 42 implants. For freehand implant placement, the median entry point deviation, apex point deviation, and implant axis deviation was 3.79 mm, 4.32 mm, and 10.08°. For dynamic guided implant placement, the median entry point deviation, apex point deviation, and implant axis deviation was 1.29 mm, 1.25 mm, and 4.89° (p < 0.001). The accuracy of dynamic guided implant was not influenced by student gender or familiarity with computer games. All students were satisfied with the training. CONCLUSIONS: Dynamic navigation system assisted students in improving the accuracy of implant placement and was well accepted by students.


Assuntos
Estudantes de Odontologia , Humanos , Feminino , Masculino , Cirurgia Assistida por Computador/métodos , Educação de Pós-Graduação em Odontologia , Implantação Dentária Endóssea , Técnicas In Vitro , Educação em Odontologia/métodos , Implantes Dentários , Inquéritos e Questionários , Implantação Dentária/educação , Competência Clínica
11.
Int J Mol Sci ; 25(10)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38791369

RESUMO

Pasteurella multocida, a zoonotic pathogen that produces a 146-kDa modular toxin (PMT), causes progressive atrophic rhinitis with severe turbinate bone degradation in pigs. However, its mechanism of cytotoxicity remains unclear. In this study, we expressed PMT, purified it in a prokaryotic expression system, and found that it killed PK15 cells. The host factor CXCL8 was significantly upregulated among the differentially expressed genes in a transcriptome sequencing analysis and qPCR verification. We constructed a CXCL8-knockout cell line with a CRISPR/Cas9 system and found that CXCL8 knockout significantly increased resistance to PMT-induced cell apoptosis. CXCL8 knockout impaired the cleavage efficiency of apoptosis-related proteins, including Caspase3, Caspase8, and PARP1, as demonstrated with Western blot. In conclusion, these findings establish that CXCL8 facilitates PMT-induced PK15 cell death, which involves apoptotic pathways; this observation documents that CXCL8 plays a key role in PMT-induced PK15 cell death.


Assuntos
Apoptose , Proteínas de Bactérias , Toxinas Bacterianas , Interleucina-8 , Pasteurella multocida , Interleucina-8/metabolismo , Interleucina-8/genética , Animais , Pasteurella multocida/genética , Toxinas Bacterianas/genética , Toxinas Bacterianas/toxicidade , Toxinas Bacterianas/metabolismo , Apoptose/genética , Suínos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Caspase 8/metabolismo , Caspase 8/genética , Técnicas de Inativação de Genes , Sistemas CRISPR-Cas
12.
Int J Biol Macromol ; : 132701, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38810856

RESUMO

In this study, we investigated the effects of various low-frequency ultrasound-assisted extraction processes, including ultrasound-assisted acid-soaked water bath extraction (UAW), ultrasound-assisted water bath extraction after acid soaking (AUW), acid-soaked water bath extraction followed by ultrasonics (AWU), and acid-soaked water bath extraction without ultrasound (CON), on the structural properties, thermal stability, gel properties, and microstructure of sheep's hoof gelatin. The results revealed that the primary components of sheep's hoof gelatin consisted of α1-chain, α2-chain (100-135 kDa), and ß-chain. In addition, it was observed that among the three sonication groups, sheep's hoof gelatin extracted in the AUW group exhibited the highest yield (27.16 ±â€¯0.41 %), the best gel strength (378.55 ±â€¯7.34 g), and higher viscosity at the same shear rate. The gelling temperature (25.38 ±â€¯0.45 °C) and melting temperature (32.28 ±â€¯0.52 °C) of sheep's hoof gelatin in the AUW group were significantly higher than those in the other groups (p > 0.05). Moreover, our experiments revealed that the sequence of low-frequency ultrasonic pretreatment processes was a crucial factor influencing the gel properties and structural characteristics of sheep's hoof gelatin. Specifically, the acid treatment followed by the ultrasound-assisted approach in the AUW group yielded high-quality and high-yield sheep's hoof gelatin.

13.
Front Physiol ; 15: 1340513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590694

RESUMO

This document presents a study on the relationship between physical characteristics, respiratory muscle capacity, and performance in amateur half-marathon runners. The aim of this study was to establish a preliminary predictive model to provide insights into training and health management for runners. Participants were recruited from the 2023 Beijing Olympic Forest Park Half-Marathon, comprising 233 individuals. Personal information including age, gender, height, weight, and other relevant factors were collected, and standardized testing methods were used to measure various parameters. Correlation analysis revealed significant associations between gender, height, weight, maximum expiratory pressure, maximal inspiratory pressure, and half-marathon performance. Several regression equations were developed to estimate the performance of amateur marathon runners, with a focus on gender, weight, maximum expiratory pressure, and height as predictive factors. The study found that respiratory muscle training can delay muscle fatigue and improve athletic performance. Evaluating the level of respiratory muscle capacity in marathon athletes is crucial for defining the potential speed limitations and achieving optimal performance. The information from this study can assist amateur runners in optimizing their training methods and maintaining their physical wellbeing.

14.
Chin Med ; 19(1): 58, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38584284

RESUMO

BACKGROUND: Danggui Sini decoction (DSD), a traditional Chinese medicine formula, has the function of nourishing blood, warming meridians, and unblocking collaterals. Our clinical and animal studies had shown that DSD can effectively protect against oxaliplatin (OXA)-induced peripheral neuropathy (OIPN), but the detailed mechanisms remain uncertain. Multiple studies have confirmed that gut microbiota plays a crucial role in the development of OIPN. In this study, the potential mechanism of protective effect of DSD against OIPN by regulating gut microbiota was investigated. METHODS: The neuroprotective effects of DSD against OIPN were examined on a rat model of OIPN by determining mechanical allodynia, biological features of dorsal root ganglia (DRG) as well as proinflammatory indicators. Gut microbiota dysbiosis was characterized using 16S rDNA gene sequencing and metabolism disorders were evaluated using untargeted and targeted metabolomics. Moreover the gut microbiota mediated mechanisms were validated by antibiotic intervention and fecal microbiota transplantation. RESULTS: DSD treatment significantly alleviated OIPN symptoms by relieving mechanical allodynia, preserving DRG integrity and reducing proinflammatory indicators lipopolysaccharide (LPS), IL-6 and TNF-α. Besides, DSD restored OXA induced intestinal barrier disruption, gut microbiota dysbiosis as well as systemic metabolic disorders. Correlation analysis revealed that DSD increased bacterial genera such as Faecalibaculum, Allobaculum, Dubosiella and Rhodospirillales_unclassified were closely associated with neuroinflammation related metabolites, including positively with short-chain fatty acids (SCFAs) and sphingomyelin (d18:1/16:0), and negatively with pi-methylimidazoleacetic acid, L-glutamine and homovanillic acid. Meanwhile, antibiotic intervention apparently relieved OIPN symptoms. Furthermore, fecal microbiota transplantation further confirmed the mediated effects of gut microbiota. CONCLUSION: DSD alleviates OIPN by regulating gut microbiota and potentially relieving neuroinflammation related metabolic disorder.

15.
Int J Biol Macromol ; 267(Pt 2): 131610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38621565

RESUMO

Brain-derived neurotrophic factor (BDNF) is a neurotrophic protein that promotes neuronal survival, increases neurotransmitter synthesis, and has potential therapeutic effects in neurodegenerative and psychiatric diseases, but its drug development has been limited by the fact that recombinant proteins of BDNF are unstable and do not penetrate the blood-brain barrier (BBB). In this study, we fused a TAT membrane-penetrating peptide with BDNF to express a recombinant protein (TBDNF), which was then PEG-modified to P-TBDNF. Protein characterization showed that P-TBDNF significantly improved the stability of the recombinant protein and possessed the ability to penetrate the BBB, and in cellular experiments, P-TBDNF prevented MPTP-induced nerve cell oxidative stress damage, apoptosis and inflammatory response, and its mechanism of action was closely related to the activation of tyrosine kinase B (TrkB) receptor and inhibition of microglia activation. In animal experiments, P-TBDNF improved motor and cognitive deficits in MPTP mice and inhibited pathological changes in Parkinson's disease (PD). In conclusion, this paper is expected to reveal the mechanism of action of P-TBDNF in inhibiting neurotoxicity, provide a new way for treating PD, and lay the foundation for the future development of recombinant P-TBDNF.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Fármacos Neuroprotetores , Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Fator Neurotrófico Derivado do Encéfalo/genética , Camundongos , Fármacos Neuroprotetores/farmacologia , Proteínas Recombinantes/farmacologia , Barreira Hematoencefálica/metabolismo , Masculino , Estresse Oxidativo/efeitos dos fármacos , Humanos , Apoptose/efeitos dos fármacos , Receptor trkB/metabolismo , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Doença de Parkinson/metabolismo , Doença de Parkinson/tratamento farmacológico , Camundongos Endogâmicos C57BL
16.
Int J Surg ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38626431

RESUMO

BACKGROUND: The prognostic value of carbohydrate antigen 19-9 (CA19-9) is known to be affected by elevated bilirubin levels in patients with gallbladder carcinoma (GBC). The clinical significance of changes in the ratio of CA19-9 levels to total bilirubin (TB) levels in patients with GBC after curative-intent resection remains unknown. The aim of this study was to determine the prognostic value of changes in preoperative and postoperative CA19-9/TB ratio in these patients. METHODS: Prospectively colleced data on consecutive patients who underwent curative-intent resection for GBC between January 2015 and December 2020 stored in a multicenter database from 10 hospitals were analysed in this retrospective cohort study. Based on the adjusted CA19-9 defined as the ratio of CA19-9 to TB, and using 2×103 U/µmol as the upper normal value, patients were divided into a normal group (with normal preoperative and postoperative adjusted CA19-9), a normalization group (with abnormal preoperative but normal postoperative adjusted CA19-9), and a non-normalization group (with abnormal postoperative adjusted CA19-9). The primary outcomes were overall survival (OS) and recurrence-free survival (RFS). The log-rank test was used to compare OS and RFS among the groups. The Cox regression model was used to determine factors independently associated with OS and RFS. RESULTS: The normal group (n=179 patients) and the normalization group (n=73 patients) had better OS and RFS than the non-normalization group (n=65 patients) (the 3-year OS rates 72.0%, 58.4% and 24.2%, respectively; the RFS rates 54.5%, 25.5% and 11.8%, respectively; both P<0.001). There were no significant differences between the normal and the normalization groups in OS and RFS (OS, P=0.255; RFS, P=0.130). Cox regression analysis confirmed that the non-normalization group was independently associated with worse OS and RFS. Subgroup analysis revealed that the non-normalization group of patients who received adjuvant therapy had significantly improved OS and RFS as compared to those who did not receive adjuvant therapy (OS, P=0.025; RFS, P=0.003). CONCLUSIONS: Patients with GBC who underwent curative-intent surgical resection with postoperative abnormal levels of adjusted CA19-9 (the CA19-9/TB ratio) were associated with poorer long-term survival outcomes. Adjuvant therapy after surgery improved the long-term outcomes of these patients.

17.
Heliyon ; 10(7): e28608, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586331

RESUMO

Apoptosis is the primary cause of cell death in the differentiation of Adipose-derived stromal cells (ADSCs) into neurons. However, the relationship between endoplasmic reticulum stress (ERS) and death receptor-mediated apoptosis in ADSC-induced neuronal differentiation is not clear. ADSCs were isolated and induced to differentiate into neurons using ß-mercaptoethanol. The expression of neuron-specific enolase (NSE), GRP94, CHOP, Fas/FasL, TNFR1/TNF-α, DR5/TRAIL, Caspase8, and Caspase3 in ADSCs was examined using immunocytochemistry and Western blotting before induction, during pre-induction, and after induction. Transmission electron microscopy (TEM) was used to observe changes in the morphology of the endoplasmic reticulum (ER), and the MTT assay was employed to measure cell viability in the uninduced and induced groups. Additionally, the number of apoptotic cells during the induction process was measured using flow cytometry with Annexin V/PI. With increasing induction time, the positive expression rates of CHOP, Fas/FasL, Caspase8, Caspase-3, and NSE gradually increased, while the positive expression rate of GRP94 decreased. TNFR1/TNF-α and DR5/TRAIL peaked at 5 h post-induction and then decreased at 8 h. TEM revealed swelling and expansion of the ER, vacuolar changes, and degranulation in cells. The MTT assay showed a gradual decrease in the absorbance of surviving cells in all groups. Flow cytometry indicated an increasing rate of apoptosis in cells. Therefore, ERS in the normal culture and growth of ADSCs, manifesting as enhanced unfolded protein response (UPR), maintains the normal survival of ADSCs. However, in the process of ADSC-induced differentiation into neurons, ERS and death receptor-mediated apoptosis are significant causes of cell death.

18.
Int J Biol Sci ; 20(6): 2219-2235, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617542

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is one of the common causes of chronic liver disease in the world. The problem of NAFLD had become increasingly prominent. However, its pathogenesis is still indistinct. As we all know, NAFLD begins with the accumulation of triglyceride (TG), leading to fatty degeneration, inflammation and other liver tissues damage. Notably, structure of nucleoporin 85 (NUP85) is related to lipid metabolism and inflammation of liver diseases. In this study, the results of researches indicated that NUP85 played a critical role in NAFLD. Firstly, the expression level of NUP85 in methionine-choline-deficient (MCD)-induced mice increased distinctly, as well as the levels of fat disorder and inflammation. On the contrary, knockdown of NUP85 had the opposite effects. In vitro, AML-12 cells were stimulated with 2 mm free fatty acids (FFA) for 24 h. Results also proved that NUP85 significantly increased in model group, and increased lipid accumulation and inflammation level. Besides, NUP85 protein could interact with C-C motif chemokine receptor 2 (CCR2). Furthermore, when NUP85 protein expressed at an extremely low level, the expression level of CCR2 protein also decreased, accompanied with an inhibition of phosphorylation of phosphoinositol-3 kinase (PI3K)-protein kinase B (AKT) signaling pathway. What is more, trans isomer (ISRIB), a targeted inhibitor of NUP85, could alleviate NAFLD. In summary, our findings suggested that NUP85 functions as an important regulator in NAFLD through modulation of CCR2.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Metabolismo dos Lipídeos/genética , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Transdução de Sinais , Receptores de Quimiocinas , Inflamação
19.
Brain Commun ; 6(2): fcae119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638149

RESUMO

Prior efforts have manifested that functional connectivity (FC) network disruptions are concerned with cognitive disorder in presbycusis. The present research was designed to investigate the topological reorganization and classification performance of low-order functional connectivity (LOFC) and high-order functional connectivity (HOFC) networks in patients with presbycusis. Resting-state functional magnetic resonance imaging (Rs-fMRI) data were obtained in 60 patients with presbycusis and 50 matched healthy control subjects (HCs). LOFC and HOFC networks were then constructed, and the topological metrics obtained from the constructed networks were compared to evaluate topological differences in global, nodal network metrics, modularity and rich-club organization between patients with presbycusis and HCs. The use of HOFC profiles boosted presbycusis classification accuracy, sensitivity and specificity compared to that using LOFC profiles. The brain networks in both patients with presbycusis and HCs exhibited small-world properties within the given threshold range, and striking differences between groups in topological metrics were discovered in the constructed networks (LOFC and HOFC). NBS analysis identified a subnetwork involving 26 nodes and 23 signally altered internodal connections in patients with presbycusis in comparison to HCs in HOFC networks. This study highlighted the topological differences between LOFC and HOFC networks in patients with presbycusis, suggesting that HOFC profiles may help to further identify brain network abnormalities in presbycusis.

20.
Nat Commun ; 15(1): 2803, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38555305

RESUMO

Myeloid derived suppressor cells (MDSCs) are key regulators of immune responses and correlate with poor outcomes in hematologic malignancies. Here, we identify that MDSC mitochondrial fitness controls the efficacy of doxorubicin chemotherapy in a preclinical lymphoma model. Mechanistically, we show that triggering STAT3 signaling via ß2-adrenergic receptor (ß2-AR) activation leads to improved MDSC function through metabolic reprograming, marked by sustained mitochondrial respiration and higher ATP generation which reduces AMPK signaling, altering energy metabolism. Furthermore, induced STAT3 signaling in MDSCs enhances glutamine consumption via the TCA cycle. Metabolized glutamine generates itaconate which downregulates mitochondrial reactive oxygen species via regulation of Nrf2 and the oxidative stress response, enhancing MDSC survival. Using ß2-AR blockade, we target the STAT3 pathway and ATP and itaconate metabolism, disrupting ATP generation by the electron transport chain and decreasing itaconate generation causing diminished MDSC mitochondrial fitness. This disruption increases the response to doxorubicin and could be tested clinically.


Assuntos
Neoplasias Hematológicas , Células Supressoras Mieloides , Succinatos , Humanos , Glutamina/metabolismo , Neoplasias Hematológicas/metabolismo , Trifosfato de Adenosina/metabolismo , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Doxorrubicina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...