Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 138, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38310206

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) are the foundation cells for continual spermatogenesis and germline regeneration in mammals. SSC activities reside in the undifferentiated spermatogonial population, and currently, the molecular identities of SSCs and their committed progenitors remain unclear. RESULTS: We performed single-cell transcriptome analysis on isolated undifferentiated spermatogonia from mice to decipher the molecular signatures of SSC fate transitions. Through comprehensive analysis, we delineated the developmental trajectory and identified candidate transcription factors (TFs) involved in the fate transitions of SSCs and their progenitors in distinct states. Specifically, we characterized the Asingle spermatogonial subtype marked by the expression of Eomes. Eomes+ cells contained enriched transplantable SSCs, and more than 90% of the cells remained in the quiescent state. Conditional deletion of Eomes in the germline did not impact steady-state spermatogenesis but enhanced SSC regeneration. Forced expression of Eomes in spermatogenic cells disrupted spermatogenesis mainly by affecting the cell cycle progression of undifferentiated spermatogonia. After injury, Eomes+ cells re-enter the cell cycle and divide to expand the SSC pool. Eomes+ cells consisted of 7 different subsets of cells at single-cell resolution, and genes enriched in glycolysis/gluconeogenesis and the PI3/Akt signaling pathway participated in the SSC regeneration process. CONCLUSIONS: In this study, we explored the molecular characteristics and critical regulators of subpopulations of undifferentiated spermatogonia. The findings of the present study described a quiescent SSC subpopulation, Eomes+ spermatogonia, and provided a dynamic transcriptional map of SSC fate determination.


Assuntos
Análise da Expressão Gênica de Célula Única , Testículo , Masculino , Animais , Camundongos , Testículo/metabolismo , Espermatogônias , Espermatogênese/genética , Células-Tronco , Diferenciação Celular/genética , Mamíferos/genética
2.
Dev Dyn ; 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38063258

RESUMO

BACKGROUND: Inhibitors of DNA binding (ID) proteins mainly inhibit gene expression and regulate cell fate decisions by interacting with E-proteins. All four ID proteins (ID1-4) are present in the testis, and ID4 has a particularly important role in spermatogonial stem cell fate determination. Several lines of evidence indicate that ID proteins are involved in meiosis; however, functional experiments have not been conducted to validate this observation. RESULTS: In this study, we report that ID2 is enriched in spermatocytes and that forced ID2 expression in germ cells causes defects in spermatogenesis. A detailed analysis demonstrated that Id2 overexpression (Id2 OE) decreased the total number of spermatogonia and changed the dynamics of meiosis progression. Specifically, spermatocytes were enriched in the zygotene stage, and the proportion of pachytene spermatocytes was significantly decreased, indicating defects in the zygotene-pachytene transition. The number of MLH1-positive foci per cell was decreased in pachytene spermatocytes from Id2 OE testes, suggesting abnormalities in recombination. Transcriptome analysis revealed that forced Id2 expression changed the expression of a list of genes mainly associated with meiosis and spermatid development. CONCLUSIONS: ID2 protein is expressed in spermatocytes, and its genetic ablation in the germline does not affect spermatogenesis, likely due to genetic compensation of its family members. However, forced Id2 expression changes meiosis progression and causes defects in spermiogenesis. These data provide important evidence that ID proteins play pivotal roles in male meiosis and spermatid development.

3.
Cell Biosci ; 13(1): 177, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37749649

RESUMO

BACKGROUND: Spermatogonial stem cells (SSCs) provide a foundation for robust and continual spermatogenesis in mammals. SSCs self-renew to maintain a functional stem cell pool and differentiate to supply committed progenitors. Metabolism acts as a crucial determinant of stem cell fates; however, factors linking metabolic programs to SSC development and maintenance are poorly understood. RESULTS: We analyzed the chromatin accessibility of undifferentiated spermatogonia at the single-cell level and identified 37 positive TF regulators that may have potential roles in dictating SSC fates. The transcription factor E4F1 is expressed in spermatogonia, and its conditional deletion in mouse germ cells results in progressive loss of the entire undifferentiated spermatogonial pool. Single-cell RNA-seq analysis of control and E4f1-deficient spermatogonia revealed that E4F1 acts as a key regulator of mitochondrial function. E4F1 binds to promotors of genes that encode components of the mitochondrial respiratory chain, including Ndufs5, Cox7a2, Cox6c, and Dnajc19. Loss of E4f1 function caused abnormal mitochondrial morphology and defects in fatty acid metabolism; as a result, undifferentiated spermatogonia were gradually lost due to cell cycle arrest and elevated apoptosis. Deletion of p53 in E4f1-deficient germ cells only temporarily prevented spermatogonial loss but did not rescue the defects in SSC maintenance. CONCLUSIONS: Emerging evidence indicates that metabolic signals dictate stem cell fate decisions. In this study, we identified a list of transcription regulators that have potential roles in the fate transitions of undifferentiated spermatogonia in mice. Functional experiments demonstrated that the E4F1-mediated transcription program is a crucial regulator of metabolism and SSC fate decisions in mammals.

4.
Nat Commun ; 13(1): 4887, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068211

RESUMO

Wild yak (Bos mutus) and domestic yak (Bos grunniens) are adapted to high altitude environment and have ecological, economic, and cultural significances on the Qinghai-Tibetan Plateau (QTP). Currently, the genetic and cellular bases underlying adaptations of yak to extreme conditions remains elusive. In the present study, we assembled two chromosome-level genomes, one each for wild yak and domestic yak, and screened structural variants (SVs) through the long-read data of yak and taurine cattle. The results revealed that 6733 genes contained high-FST SVs. 127 genes carrying special type of SVs were differentially expressed in lungs of the taurine cattle and yak. We then constructed the first single-cell gene expression atlas of yak and taurine cattle lung tissues and identified a yak-specific endothelial cell subtype. By integrating SVs and single-cell transcriptome data, we revealed that the endothelial cells expressed the highest proportion of marker genes carrying high-FST SVs in taurine cattle lungs. Furthermore, we identified pathways which were related to the medial thickness and formation of elastic fibers in yak lungs. These findings provide new insights into the high-altitude adaptation of yak and have important implications for understanding the physiological and pathological responses of large mammals and humans to hypoxia.


Assuntos
Células Endoteliais , Genoma , Aclimatação/genética , Animais , Bovinos , Humanos , Mamíferos/genética , RNA , Transcriptoma/genética
5.
Stem Cell Reports ; 15(4): 968-982, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053361

RESUMO

Sertoli cells are the major component of the spermatogonial stem cell (SSC) niche; however, regulatory mechanisms in Sertoli cells that dictate SSC fate decisions remain largely unknown. Here we revealed features of the N6-methyladenosine (m6A) mRNA modification in Sertoli cells and demonstrated the functions of WTAP, the key subunit of the m6A methyltransferase complex in spermatogenesis. m6A-sequencing analysis identified 21,909 m6A sites from 15,365 putative m6A-enriched transcripts within 6,122 genes, including many Sertoli cell-specific genes. Conditional deletion of Wtap in Sertoli cells resulted in sterility and the progressive loss of the SSC population. RNA sequencing and ribosome nascent-chain complex-bound mRNA sequencing analyses suggested that alternative splicing events of transcripts encoding SSC niche factors were sharply altered and translation of these transcripts were severely dysregulated by Wtap deletion. Collectively, this study uncovers a novel regulatory mechanism of the SSC niche and provide insights into molecular interactions between stem cells and their cognate niches in mammals.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fatores de Processamento de RNA/metabolismo , Células de Sertoli/citologia , Células de Sertoli/metabolismo , Espermatogônias/citologia , Nicho de Células-Tronco , Adenosina/análogos & derivados , Adenosina/metabolismo , Animais , Diferenciação Celular/genética , Proliferação de Células/genética , Autorrenovação Celular/genética , Deleção de Genes , Regulação da Expressão Gênica no Desenvolvimento , Infertilidade Masculina/patologia , Masculino , Camundongos Knockout , Biossíntese de Proteínas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Espermatogônias/metabolismo , Nicho de Células-Tronco/genética , Transcrição Gênica
6.
Reprod Biol ; 20(4): 525-535, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32952085

RESUMO

In mammals, spermatogonial stem cells (SSCs) arise from a subpopulation of prospermatogonia during neonatal testis development. Currently, molecular mechanisms directing the prospermatogonia to spermatogonial transition are not well understood. In the study, we found that reducing Sertoli cells number by Amh-cre mediated expression of diphtheria toxin (AC;DTA) in murine fetal testis caused defects in prospermatogonia fate decisions. Histological and immunohistochemical analyses confirmed that Sertoli cells loss occurred at embryonic day (E) 14.5. Prospermatogonia maintained mitotic arrest at E16.5 in control animals, in contrast, 13.4% of germ cells in AC;DTA testis reentered cell cycle and expressed gH2A.X and Sycp3, indicating the commitment to meiosis. After birth, the number of prospermatogonia resuming mitosis was significantly affected by Sertoli cell loss in AC;DTA animals. Lastly, we isolated primary Sertoli cells using a Sertoli cell specific GFP reporter line and showed dynamics of Sertoli cell transcriptomes at E12.5, E13.5, E16.5 and P1. By further analysis, we revealed unique gene expression patterns and potential candidate genes regulating Sertoli cell development and likely mediating interactions between Sertoli cells, prospermatogonia and other testicular cells.


Assuntos
Perfilação da Expressão Gênica/veterinária , Células de Sertoli/fisiologia , Espermatogônias/crescimento & desenvolvimento , Testículo/embriologia , Animais , Animais Recém-Nascidos , Diferenciação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Meiose , Camundongos , Camundongos Transgênicos , Espermatogênese/fisiologia , Testículo/citologia
7.
Animals (Basel) ; 10(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962114

RESUMO

In the mammalian testes, Sertoli cells are the only somatic cells in the seminiferous tubules that provide structural, nutritional and regulatory support for developing spermatogenic cells. Sertoli cells only proliferate during the fetal and neonatal periods and enter a quiescent state after puberty. Functional evidences suggest that the size of Sertoli cell population determines sperm production and fertility. However, factors that direct Sertoli cell proliferation and maturation are not fully understood. Transcription factor E4F1 is a multifunctional protein that serves essential roles in cell fate decisions and because it interacts with pRB, a master regulator of Sertoli cell function, we hypothesized that E4F1 may have a functional role in Sertoli cells. E4f1 mRNA was present in murine testis and immunohistochemical staining confirmed that E4F1 was enriched in mature Sertoli cells. We generated a conditional knockout mouse model using Amh-cre and E4f1flox/flox lines to study E4F1 fucntion in Sertoli cells and the results showed that E4f1 deletion caused a significant reduction in testis size and fertility. Further analyses revealed that meiosis progression and spermiogenesis were normal, however, Sertoli cell proliferation was impaired and germ cell apoptosis was elevated in the testis of E4f1 conditional knockout mice. On the basis of these findings, we concluded that E4F1 was expressed in murine Sertoli cells and served important functions in regulating Sertoli cell proliferation and fertility.

8.
Genes (Basel) ; 11(1)2020 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-31940753

RESUMO

Spermatogenesis is a complex cellular-differentiation process that relies on the precise regulation of gene expression in spermatogonia, meiotic, and postmeiotic germ cells. The Ring 1 and YY1 binding protein (Rybp) is a member of the mammalian polycomb-group (PcG) protein family that plays multifunctional roles in development. Previous findings indicate that Rybp may function as an important regulator of meiosis. However, its expression in the testes and function in spermatogenesis have not been examined. In this study, we investigated Rybp expression in postnatal mouse testes using qRT-PCR and immunohistochemistry. We also examined the function of Rybp in spermatogenesis by using a conditional-knockout approach. Results showed that the relative expression of Rybp mRNA was significantly upregulated in the testes of postnatal day (PD) 6 mice. Immunofluorescent staining revealed that Rybp was enriched in the spermatocytes. Surprisingly, a conditional deletion of Rybp in fetal germ cells did not affect the fertility or normal development of spermatogenic cells. Further analysis revealed that Rybp deletion resulted in a decreased expression of meiosis-related genes, but that meiosis progression was normal. Together, these findings suggest that Rybp expression was enriched in spermatocytes, but that it was not required for spermatogenesis.


Assuntos
Regulação da Expressão Gênica , Meiose , Proteínas Repressoras/biossíntese , Espermatogênese , Testículo/metabolismo , Animais , Masculino , Camundongos , Camundongos Knockout , Proteínas Repressoras/genética
9.
Theriogenology ; 123: 74-82, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30296653

RESUMO

During evolution, animals optimize their reproductive strategies to increase offspring survival. Seasonal breeders reproduce only during certain times of the year. In mammals, reproduction is tightly controlled by hypothalamus-pituitary-gonad axis. Although pathways regulating gametogenesis in non-seasonal model species have been well established, molecular insights into seasonal reproduction are severely limited. Using the Plateau pika (Ochotona curzoniae), a small rodent animal species native to the Qinghai-Tibetan plateau, as a model, here we report that seasonal spermatogenesis is governed at the level of spermatogonial differentiation. In testis of the reproductively dormant animals, undifferentiated spermatogonia failed to differentiate and accumulated in the seminiferous tubules. RNA-seq analyses of the active and dormant testes revealed that genes modulating retinoic acid biogenesis and steriodogenesis were differentially regulated. A single injection of all-trans retinoic acid (ATRA) reinitiated spermatogenesis and inhibition the function of RA-degrading enzyme CYP26B1 for 10 days induced spermatogonial differentiation. Strikingly, testosterone injection reinitiated spermatogenesis in short day adapted animals. Testosterone provides a permissive environment of RA biogenesis and actions in testis, therefore, indirectly controls spermatogonial differentiation. Collectively, these findings provide a key mechanistic insight regarding the molecular regulation of seasonal reproduction in mammals.


Assuntos
Diferenciação Celular/fisiologia , Lagomorpha/fisiologia , Transdução de Sinais/fisiologia , Espermatogônias/fisiologia , Testosterona/fisiologia , Tretinoína/farmacologia , Animais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Masculino , Ácido Retinoico 4 Hidroxilase/metabolismo , Estações do Ano , Tretinoína/administração & dosagem , Tretinoína/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...