Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Plant Biol ; 24(1): 458, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797860

RESUMO

BACKGROUND: The endosperm serves as the primary source of nutrients for maize (Zea mays L.) kernel embryo development and germination. Positioned at the base of the endosperm, the transfer cells (TCs) of the basal endosperm transfer layer (BETL) generate cell wall ingrowths, which enhance the connectivity between the maternal plant and the developing kernels. These TCs play a crucial role in nutrient transport and defense against pathogens. The molecular mechanism underlying BETL development in maize remains unraveled. RESULTS: This study demonstrated that the MYB-related transcription factor ZmMYBR29, exhibited specific expression in the basal cellularized endosperm, as evidenced by in situ hybridization analysis. Utilizing the CRISPR/Cas9 system, we successfully generated a loss-of-function homozygous zmmybr29 mutant, which presented with smaller kernel size. Observation of histological sections revealed abnormal development and disrupted morphology of the cell wall ingrowths in the BETL. The average grain filling rate decreased significantly by 26.7% in zmmybr29 mutant in comparison to the wild type, which impacted the dry matter accumulation within the kernels and ultimately led to a decrease in grain weight. Analysis of RNA-seq data revealed downregulated expression of genes associated with starch synthesis and carbohydrate metabolism in the mutant. Furthermore, transcriptomic profiling identified 23 genes that expressed specifically in BETL, and the majority of these genes exhibited altered expression patterns in zmmybr29 mutant. CONCLUSIONS: In summary, ZmMYBR29 encodes a MYB-related transcription factor that is expressed specifically in BETL, resulting in the downregulation of genes associated with kernel development. Furthermore, ZmMYBR29 influences kernels weight by affecting the grain filling rate, providing a new perspective for the complementation of the molecular regulatory network in maize endosperm development.


Assuntos
Grão Comestível , Endosperma , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas , Fatores de Transcrição , Zea mays , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Grão Comestível/genética , Grão Comestível/crescimento & desenvolvimento , Grão Comestível/metabolismo , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Parede Celular/metabolismo , Parede Celular/genética , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Sistemas CRISPR-Cas
2.
Exp Gerontol ; 185: 112351, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135257

RESUMO

BACKGROUND: Intestinal stem cells (ISCs) are the reservoir source of various types of intestinal cells, and the decline of stem cell function in the gut may be a potential factor for aging-related disease. The present study aimed to explore the regulatory mechanisms of Panax ginseng C.A.Meyer (Araliaceae, Panax genus) that could restore gut aging by enhancing intestinal function and regulating ISCs in aging mice based on the Wnt/ß-catenin signaling pathway. METHODS: A total of 60 ICR male mice were randomly divided into control, model, metformin, and ginseng water decoction (GWD) 3.6, 1.8, and 0.9 g/kg groups. The aging model was induced by 1 % D-galactose (s.c. 0.1 mL/10 g) for 28 days. Moreover, GWD was given to aging mice intragastrically (i.g.) once a day for 28 successive days. The learning memory ability, pathological status, and function in the ileum tissue, the activity of digestive enzymes, and short-chain fatty acid (SCFA) content in the colon were evaluated, and the related mechanism was investigated. RESULTS: Ginseng can decrease the escape latency time and increase the swimming speed and the number of crossing platforms in aging mice. Moreover, the pathology of ileum tissue improved, the length of the intestinal villi increased, and the width of the villi and the depth of the crypts decreased. The activities of trypsin, α-amylase, and lipase increased in duodenal content and intestinal mucosa. In the colon, the content of SCFA, such as acetic acid, propionic acid and butyric acid, increased, indicating that ginseng significantly improves intestinal function impairment. The mRNA expressions and protein levels of ß-catenin, C-myc, GSK-3ß, Lgr5, and Olfm4 were upregulated in the ginseng group. CONCLUSIONS: Ginseng improves intestinal function and regulates the function of ISCs in order to protect intestinal health by activating the Wnt/ß-catenin signaling pathway in aging mice.


Assuntos
Panax , Via de Sinalização Wnt , Camundongos , Masculino , Animais , Galactose/farmacologia , Galactose/metabolismo , Panax/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Camundongos Endogâmicos ICR , Células-Tronco/metabolismo , Envelhecimento , Mucosa Intestinal/metabolismo
3.
J Exp Bot ; 74(18): 5694-5708, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37490479

RESUMO

The mitochondrion is a semi-autonomous organelle that provides energy for cell activities through oxidative phosphorylation. In this study, we identified a defective kernel 66 (dek66)-mutant maize with defective kernels. We characterized a candidate gene, DEK66, encoding a ribosomal assembly factor located in mitochondria and possessing GTPase activity (which belongs to the ribosome biogenesis GTPase A family). In the dek66 mutant, impairment of mitochondrial structure and function led to the accumulation of reactive oxygen species and promoted programmed cell death in endosperm cells. Furthermore, the transcript levels of most of the key genes associated with nutrient storage, mitochondrial respiratory chain complex, and mitochondrial ribosomes in the dek66 mutant were significantly altered. Collectively, the results suggest that DEK66 is essential for the development of maize kernels by affecting mitochondrial function. This study provides a reference for understanding the impact of a mitochondrial ribosomal assembly factor in maize kernel development.


Assuntos
Proteínas de Plantas , Zea mays , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Endosperma/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Zhen Ci Yan Jiu ; 48(1): 71-6, 2023 Jan 25.
Artigo em Chinês | MEDLINE | ID: mdl-36734501

RESUMO

OBJECTIVE: To observe the effect of electroacupuncture (EA) pretreatment on inflammatory response in ven-tilator-induced lung injury (VILI) mice, so as to explore the underlying mechanism of EA pretreatment on prevention of VILI. METHODS: C57BL/6 mice were randomly divided into sham-operation group, model group, EA group and sham-acupoint group,with 8 mice in each group. The VILI model was established by ventilation with high tidal volume. Mice in the EA group and sham-acupoint group were given EA at "Zusanli" (ST36)and "Feishu"(BL13) or non-acupoints (located at 1-2 cm on both sides of the tail root of the proximal trunk) before mechanical ventilation, 30 min each time, once a day for 5 days. Arterial blood was collec-ted for blood gas analysis, the total protein content in bronchoalveolar lavage fluid (BALF) was detected by BCA method. The contents of interleukin-1ß (IL-1ß) and interleukin-18 (IL-18) in BALF were detected by ELISA. Lung injury score was determined after HE staining. The protein expression levels of nucleotide-binding oligomerization domain-like receptor protein 3(NLRP3), apoptosis-associated speck-like protein containing a caspase-recruitment domain (ASC) and Caspase-1 in lung tissue was detected by Western blot. RESULTS: Compared with the sham-operation group, the arterial partial pressure of oxygen and oxygenation index were decreased(P<0.05), the levels of total protein, IL-1ß and IL-18 in BALF, the W/D value and the pathological injury score of lung tissue and the protein expression levels of NLRP3, Caspase-1 and ASC were increased(P<0.05)in the model group. Following the interventions, the above mentioned increased or decreased indicators were reversed(P<0.05) in the EA group rather than in the sham-acupoint group. CONCLUSION: EA pretreatment of ST36 and BL13 can reduce the damage of lung tissue caused by mechanical ventilation, which may be related to its effect in reducing the expression of NLPR3 inflammasome related proteins, reducing the activation of inflammasome, and thereby reducing the inflammatory response.


Assuntos
Eletroacupuntura , Lesão Pulmonar Induzida por Ventilação Mecânica , Camundongos , Animais , Inflamassomos/genética , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Interleucina-18 , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Lesão Pulmonar Induzida por Ventilação Mecânica/genética , Lesão Pulmonar Induzida por Ventilação Mecânica/terapia , Lesão Pulmonar Induzida por Ventilação Mecânica/metabolismo , Caspase 1
5.
Spectrochim Acta A Mol Biomol Spectrosc ; 291: 122383, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36682253

RESUMO

The discovery of a series of coupling reactions between various building blocks has driven the development of porous organic polymers, but the common usage of expensive and air-sensitive organometallic catalysts and complex procedures in harsh syntheses has limited their expansion. A microporous hypercrosslinked polymer (HCP) was synthesized by polymerizing a naphthalene monomer and a 1,4-dimethoxybenzene crosslinker using Friedel-Crafts alkylation over an FeCl3 catalyst and imprinted with 3,5-dinitrosalicylic acid (DNS). The DNS-molecularly-imprinted HCPs (MIHCPs) were characterized as having IUPAC Type I mesoporosity, a specific surface area of 1134 m2 g-1, a monolayer adsorption capacity of 116 cm2 g-1, pore sizes ranging from 5 to 8.5 Å, amorphous frameworks, and distinctive absorption and emission bands by N2 adsorption/desorption analyses, scanning and transmission electron microscopies, and FTIR, UV-Vis, and fluorescence spectrometries. The π-conjugated imprinted framework endowed the MIHCPs with 405-nm fluorescent emission at a 330-nm excitation and dynamic quenching, which was confirmed by changes in fluorescence lifetime and followed a linear Stern-Volmer plot against 1.0-200 µM DNS template molecules under optimized conditions of a pH 7.0 buffer, an MIHCP concentration of 125 µg mL-1, and a 3.0-min equilibration time. The MIHCPs exhibited a high imprinted factor of 8.7 against nonimprinted HCP and a selectivity of 8.63 against reduced DNS, which enabled fluorometric detection of DNS molecules produced by the hydrolysis of starch with microbial, salivary, and pancreatic α-amylases and the subsequent redox incubation with the DNS oxidant. The fluorometric measurement of α-amylase activity was higher in accuracy and precision (RSD: 2.6-2.8% vs. 3.9-4.0%) than conventional UV-Vis spectrometry because the excellent fluorescent sensitivity and imprinting selectivity of the MIHCP probes enabled the use of higher dilution factors with weaker matrix effects.


Assuntos
Impressão Molecular , Polímeros , Polímeros/química , Impressão Molecular/métodos , Espectrometria de Fluorescência/métodos , Corantes , alfa-Amilases , Adsorção
6.
Mikrochim Acta ; 190(2): 68, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36694059

RESUMO

A molecularly imprinted hypercrosslinked polymer (HCP) was synthesized from the polymerization of mesitylene monomer, terephthaloyl chloride crosslinker, and tannic acid (TA) template through FeCl3-catalyzed Friedel-Crafts acylation. The TA-imprinted HCP (TAHCP) was capable of IUPAC Type I mesoporosity, with specific surface area of 1258 m2 g-1, monolayer adsorption capacity of 289 cm2 g-1, pore sizes ranging from 4.4 to 12.6 Å, amorphous morphology, and characteristic absorption and emission bands. The extended π-conjugation framework of TAHCP was endowed with 385-nm fluorescent emission at 310-nm excitation. The fluorescence intensity of TAHCP could be dynamically quenched by TA and was linearly correlated with 20-1000 nM TA concentrations on the Stern-Volmer plot in the optimized conditions of pH 5.5 buffer, 100 µg mL-1 TAHCP, and 3.5 min equilibrium. The relative standard deviation (RSD) for 50 nM TA was 3.4% (n = 5), and the limit of detection was 6.2 nM based on the 3σ of the TA blanks). For 50nM TA, the imprinted factor was calculated to be 7.8, and the selectivity for 250 nM interferents, including ions, organic acids, saccharides, amino acids, and caffeine, which are commonly found in beverages, was 7.5-9.5, except for gallic acid (1.2). The recoveries of TA spiked in tea and juice beverages at three levels (10-150 nM) were 93.6-101.9% (RSD = 3.6-4.3%).

7.
Neurochem Res ; 47(8): 2158-2172, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35661963

RESUMO

Type 2 diabetes (T2DM) is a well known risk factor for Alzheimer's disease. Mitochondria are the center of intracellular energy metabolism and the main source of reactive oxygen species. Mitochondrial dysfunction has been identified as a key factor in diabetes-associated brain alterations contributing to neurodegenerative events. Defective insulin signaling may act in concert with neurodegenerative mechanisms leading to abnormalities in mitochondrial structure and function. Mitochondrial dysfunction triggers neuronal energy exhaustion and oxidative stress, leading to brain neuronal damage and cognitive impairment. The normality of mitochondrial function is basically maintained by mitochondrial quality control mechanisms. In T2DM, defects in the mitochondrial quality control pathway in the brain have been found to lead to mitochondrial dysfunction and cognitive impairment. Here, we discuss the association of mitochondrial dysfunction with T2DM and cognitive impairment. We also review the molecular mechanisms of mitochondrial quality control and impacts of mitochondrial quality control on the progression of cognitive impairment in T2DM.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Diabetes Mellitus Tipo 2 , Doença de Alzheimer/metabolismo , Disfunção Cognitiva/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Humanos , Mitocôndrias/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo
8.
Anal Chim Acta ; 1168: 338608, 2021 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-34051994

RESUMO

Diltiazem, which is a calcium channel blocker, is involved in the formation of covalent organic frameworks (COFs) through the Schiff base reaction of tetrakis (4-aminophenyl)-porphine (TAPP) and dihydroxynaphthalene-dicarbaldehyde (DHNDC) and the next enol-to-keto tautomerization. The diltiazem-imprinted COFs (DICOFs) were optimally formed using Sc(OTf)3 as the catalyst, TAPP/DHNDC/diltiazem in a molar ratio of 2/3/4, N-methylpyrrolidone/mesitylene (v/v = 3/5) as the porogen, and a 1-h reaction with a high imprinting factor of 10.5 compared to the nonimprinted counterparts (NICOFs). The optimized DICOF exhibited a more amorphous XRD pattern, a larger surface area (1650 vs. 930 m2/g), a larger pore volume (1.33 vs. 0.75 cm3/g), and a finer porous SEM feature than NICOF. The selectivity of NICOF toward diltiazem and diazepam at 250 nM (α = 1.03, RSD = 1.3%) was smaller than the selectivity of DICOF (α = 2.94, RSD = 1.6%). The diltiazem samples (5.0-300 ng mL-1) dynamically quenched the fluorescence of 15 µg/mL DICOF in 50 mM phosphate buffer at pH 6.5 at 8.0 min equilibrium; thus, Stern-Volmer plots were linearly constructed for sensing diltiazem with an LOD of 3.4 ng mL-1 and an LOQ of 10.2 ng mL-1. According to the plots, 30 ng mL-1 diltiazem solutions that were diluted from 30 mg-specified tablets had an average measured concentration of 29.5 ng mL-1 (σ = 1.3% and n = 5). In addition to application as fluorescent sensors, DICOFs (30 mg) could be used as dispersive extractants to recover 95.2% of 0.6 ng mL-1 diltiazem from 25 mL phosphate buffer with quadruplicate uses of 0.5 mL methanol/acetic acid (v/v = 9/1) as the eluent. Langmuir and pseudo-second-order models were fitted to the isothermal and kinetic sorption mechanisms, respectively. The maximum sorption capacity of DICOF was ten times larger than that of NICOF (156 vs. 15.2 mg/g). The interday recoveries of 0.6 ng mL-1 spiked in 20-fold diluted human urine, and 60-fold diluted human serum were 93.2% and 90.6%, respectively.

9.
Apoptosis ; 20(4): 423-32, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25633409

RESUMO

Oxidative stress plays an important role in cellular destruction. Augmenter of liver regeneration (ALR) is an anti-apoptotic factor that is expressed in all mammalian cells and functions as an anti-oxidant by stimulating the expression of a secretory isoform of clusterin and inhibiting reactive oxygen species (ROS) generation. Previous work from our group showed that ALR expression is upregulated in acute kidney injury (AKI) rats, and recombinant human ALR reduces tubular injury. In the present study, we used small interfering RNA (siRNA) silencing of ALR to examine its role in H2O2 induced mitochondrial injury and apoptosis. Knockdown of ALR increased ROS levels, reduced mitochondrial membrane potential, and increased the release of mitochondrial proteins and the rate of apoptosis in response to H2O2. In addition, the ratio of Bax/Bcl-2 was increased in siRNA/ALR groups treated with H2O2. These data confirm the protective role of ALR against oxidative stress-induced mitochondrial injury and suggest a potential mechanism underlying the protective role of ALR in AKI.


Assuntos
Injúria Renal Aguda/enzimologia , Apoptose , Redutases do Citocromo/metabolismo , Peróxido de Hidrogênio/metabolismo , Túbulos Renais Proximais/enzimologia , Estresse Oxidativo , Injúria Renal Aguda/genética , Injúria Renal Aguda/metabolismo , Injúria Renal Aguda/fisiopatologia , Redutases do Citocromo/genética , Humanos , Túbulos Renais Proximais/metabolismo , Túbulos Renais Proximais/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Oxirredutases atuantes sobre Doadores de Grupo Enxofre
10.
Exp Cell Res ; 327(2): 287-96, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-25092350

RESUMO

Tubular epithelial-to-mesenchymal transition (EMT) plays a crucial role in the progression of renal tubular interstitial fibrosis (TIF), which subsequently leads to chronic kidney disease (CKD) and eventually, end-stage renal disease (ESRD). We propose that augmenter of liver regeneration (ALR), a member of the newly discovered ALR/Erv1 protein family shown to ameliorate hepatic fibrosis, plays a similar protective role in renal tubular cells and has potential as a new treatment option for CKD. Here, we showed that recombinant human ALR (rhALR) inhibits EMT in renal tubular cells by antagonizing activation of the transforming growth factor-ß1 (TGF-ß1) signaling pathway. Further investigation revealed that rhALR suppresses the expression of TGF-ß receptor type II (TßR II) and significantly alleviates TGF-ß1-induced phosphorylation of Smad2 and nuclear factor-κB (NF-κB). No apparent adverse effects were observed upon the addition of rhALR alone to cells. These findings collectively suggest that ALR plays a role in inhibiting progression of renal tubular EMT, supporting its potential utility as an effective antifibrotic strategy to reverse TIF in CKD.


Assuntos
Transição Epitelial-Mesenquimal , Túbulos Renais Proximais/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/antagonistas & inibidores , Proteínas Recombinantes/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Apoptose , Western Blotting , Proliferação de Células , Células Cultivadas , Imunofluorescência , Humanos , Técnicas In Vitro , Túbulos Renais Proximais/patologia , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas/genética , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptor do Fator de Crescimento Transformador beta Tipo II , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Recombinantes/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína Smad2/genética , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/genética
11.
Biosci Rep ; 34(5)2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-24844766

RESUMO

Renal fibrosis is a hallmark in CKD (chronic kidney disease) and is strongly correlated to the deterioration of renal function that is characterized by tubulointerstitial fibrosis, tubular atrophy, glomerulosclerosis and disruption of the normal architecture of the kidney. ALR (augmenter of liver regeneration) is a growth factor with biological functions similar to those of HGF (hepatocyte growth factor). In this study, our results indicate that endogenous ALR is involved in the pathological progression of renal fibrosis in UUO (unilateral ureteral obstruction) rat model. Moreover, we find that administration of rhALR (recombinant human ALR) significantly alleviates renal interstitial fibrosis and reduces renal-fibrosis-related proteins in UUO rats. Further investigation reveals that rhALR suppresses the up-regulated expression of TGF-ß1 (transforming growth factor ß1) induced by UUO operation in the obstructed kidney, and inhibits Smad2 and Smad3 phosphorylation activated by the UUO-induced injury in the animal model. Therefore we suggest that ALR is involved in the progression of renal fibrosis and administration of rhALR protects the kidney against renal fibrosis by inhibition of TGF-ß/Smad activity.


Assuntos
Redutases do Citocromo/farmacologia , Insuficiência Renal Crônica/tratamento farmacológico , Obstrução Ureteral/tratamento farmacológico , Animais , Modelos Animais de Doenças , Fibrose , Humanos , Masculino , Oxirredutases atuantes sobre Doadores de Grupo Enxofre , Ratos , Ratos Sprague-Dawley , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Obstrução Ureteral/complicações , Obstrução Ureteral/metabolismo , Obstrução Ureteral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...